Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Dec 15;90(24):11845–11849. doi: 10.1073/pnas.90.24.11845

The presequence of Euglena LHCPII, a cytoplasmically synthesized chloroplast protein, contains a functional endoplasmic reticulum-targeting domain.

R Kishore 1, U S Muchhal 1, S D Schwartzbach 1
PMCID: PMC48081  PMID: 8265635

Abstract

The precursor to the Euglena light-harvesting chlorophyll a/b-binding protein of photosystem II (pLHCPII) is unique; it is a polyprotein, synthesized on membrane-bound ribosomes and transported to the Golgi apparatus prior to chloroplast localization. A cDNA corresponding to the 5' end of LHCPII mRNA has been isolated and sequenced. The deduced amino acid sequence of this cDNA indicates that Euglena pLHCPII contains a 141-amino acid N-terminal extension. The N-terminal extension contains three hydrophobic domains and a potential signal peptidase cleavage site at amino acid 35. Cotranslational processing by canine microsomes removed approximately 35 amino acids from an in vitro synthesized 33-kDa pLHCPII composed of a 141-amino acid N-terminal extension and a 180-amino acid partial LHCPII unit truncated at the beginning of the third membrane-spanning hydrophobic domain. Processed pLHCPII was degraded by exogenous protease, indicating that it had not been translocated to the microsomal lumen. Extraction with 0.1 M Na2CO3, pH 11.5, did not remove the processed pLHCPII from the microsomal membrane. A stop-transfer membrane anchor sequence appears to anchor the nascent protein within the membrane, preventing translocation into the lumen. Taken together, these results provide biochemical evidence for a functional cleaved signal sequence within the N-terminal extension of a Euglena cytoplasmically synthesized chloroplast-localized protein.

Full text

PDF
11845

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auchincloss A. H., Alexander A., Kohorn B. D. Requirement for three membrane-spanning alpha-helices in the post-translational insertion of a thylakoid membrane protein. J Biol Chem. 1992 May 25;267(15):10439–10446. [PubMed] [Google Scholar]
  2. Bhaya D., Grossman A. Targeting proteins to diatom plastids involves transport through an endoplasmic reticulum. Mol Gen Genet. 1991 Oct;229(3):400–404. doi: 10.1007/BF00267462. [DOI] [PubMed] [Google Scholar]
  3. Chan R. L., Keller M., Canaday J., Weil J. H., Imbault P. Eight small subunits of Euglena ribulose 1-5 bisphosphate carboxylase/oxygenase are translated from a large mRNA as a polyprotein. EMBO J. 1990 Feb;9(2):333–338. doi: 10.1002/j.1460-2075.1990.tb08115.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cline K., Fulsom D. R., Viitanen P. V. An imported thylakoid protein accumulates in the stroma when insertion into thylakoids is inhibited. J Biol Chem. 1989 Aug 25;264(24):14225–14232. [PubMed] [Google Scholar]
  5. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fujiki Y., Hubbard A. L., Fowler S., Lazarow P. B. Isolation of intracellular membranes by means of sodium carbonate treatment: application to endoplasmic reticulum. J Cell Biol. 1982 Apr;93(1):97–102. doi: 10.1083/jcb.93.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gibbs S. P. The chloroplasts of some algal groups may have evolved from endosymbiotic eukaryotic algae. Ann N Y Acad Sci. 1981;361:193–208. doi: 10.1111/j.1749-6632.1981.tb46519.x. [DOI] [PubMed] [Google Scholar]
  8. Grossman A., Manodori A., Snyder D. Light-harvesting proteins of diatoms: their relationship to the chlorophyll a/b binding proteins of higher plants and their mode of transport into plastids. Mol Gen Genet. 1990 Oct;224(1):91–100. doi: 10.1007/BF00259455. [DOI] [PubMed] [Google Scholar]
  9. Gumpel N. J., Smith A. G. A novel calcium-binding protein from Euglena gracilis. Characterisation of a cDNA encoding a 74-kDa acidic-repeat protein targeted across the endoplasmic reticulum. Eur J Biochem. 1992 Dec 15;210(3):721–727. doi: 10.1111/j.1432-1033.1992.tb17473.x. [DOI] [PubMed] [Google Scholar]
  10. Huang L., Adam Z., Hoffman N. E. Deletion Mutants of Chlorophyll a/b Binding Proteins Are Efficiently Imported into Chloroplasts but Do Not Integrate into Thylakoid Membranes. Plant Physiol. 1992 May;99(1):247–255. doi: 10.1104/pp.99.1.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jansson S., Gustafsson P. Type I and type II genes for the chlorophyll a/b-binding protein in the gymnosperm Pinus sylvestris (Scots pine): cDNA cloning and sequence analysis. Plant Mol Biol. 1990 Mar;14(3):287–296. doi: 10.1007/BF00028766. [DOI] [PubMed] [Google Scholar]
  12. Muchhal U. S., Schwartzbach S. D. Characterization of a Euglena gene encoding a polyprotein precursor to the light-harvesting chlorophyll a/b-binding protein of photosystem II. Plant Mol Biol. 1992 Jan;18(2):287–299. doi: 10.1007/BF00034956. [DOI] [PubMed] [Google Scholar]
  13. Nothwehr S. F., Hoeltzli S. D., Allen K. L., Lively M. O., Gordon J. I. Residues flanking the COOH-terminal C-region of a model eukaryotic signal peptide influence the site of its cleavage by signal peptidase and the extent of coupling of its co-translational translocation and proteolytic processing in vitro. J Biol Chem. 1990 Dec 15;265(35):21797–21803. [PubMed] [Google Scholar]
  14. Osafune T., Schiff J. A., Hase E. Stage-dependent localization of LHCP II apoprotein in the Golgi of synchronized cells of Euglena gracilis by immunogold electron microscopy. Exp Cell Res. 1991 Apr;193(2):320–330. doi: 10.1016/0014-4827(91)90103-2. [DOI] [PubMed] [Google Scholar]
  15. Rikin A., Schwartzbach S. D. Extremely large and slowly processed precursors to the Euglena light-harvesting chlorophyll a/b binding proteins of photosystem II. Proc Natl Acad Sci U S A. 1988 Jul;85(14):5117–5121. doi: 10.1073/pnas.85.14.5117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Scheele G. Methods for the study of protein translocation across the RER membrane using the reticulocyte lysate translation system and canine pancreatic microsomal membranes. Methods Enzymol. 1983;96:94–111. doi: 10.1016/s0076-6879(83)96011-1. [DOI] [PubMed] [Google Scholar]
  17. Schiff J. A., Schwartzbach S. D., Osafune T., Hase E. Photocontrol and processing of LHCP II apoprotein in Euglena: possible role of Golgi and other cytoplasmic sites. J Photochem Photobiol B. 1991 Nov;11(2):219–236. doi: 10.1016/1011-1344(91)80262-g. [DOI] [PubMed] [Google Scholar]
  18. Sharif A. L., Smith A. G., Abell C. Isolation and characterisation of a cDNA clone for a chlorophyll synthesis enzyme from Euglena gracilis. The chloroplast enzyme hydroxymethylbilane synthase (porphobilinogen deaminase) is synthesised with a very long transit peptide in Euglena. Eur J Biochem. 1989 Sep 15;184(2):353–359. doi: 10.1111/j.1432-1033.1989.tb15026.x. [DOI] [PubMed] [Google Scholar]
  19. Shashidhara L. S., Lim S. H., Shackleton J. B., Robinson C., Smith A. G. Protein targeting across the three membranes of the Euglena chloroplast envelope. J Biol Chem. 1992 Jun 25;267(18):12885–12891. [PubMed] [Google Scholar]
  20. Shashidhara L. S., Smith A. G. Expression and subcellular location of the tetrapyrrole synthesis enzyme porphobilinogen deaminase in light-grown Euglena gracilis and three nonchlorophyllous cell lines. Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):63–67. doi: 10.1073/pnas.88.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Shelness G. S., Lin L., Nicchitta C. V. Membrane topology and biogenesis of eukaryotic signal peptidase. J Biol Chem. 1993 Mar 5;268(7):5201–5208. [PubMed] [Google Scholar]
  22. Tessier L. H., Keller M., Chan R. L., Fournier R., Weil J. H., Imbault P. Short leader sequences may be transferred from small RNAs to pre-mature mRNAs by trans-splicing in Euglena. EMBO J. 1991 Sep;10(9):2621–2625. doi: 10.1002/j.1460-2075.1991.tb07804.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986 Jun 11;14(11):4683–4690. doi: 10.1093/nar/14.11.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. von Heijne G. Signal sequences. The limits of variation. J Mol Biol. 1985 Jul 5;184(1):99–105. doi: 10.1016/0022-2836(85)90046-4. [DOI] [PubMed] [Google Scholar]
  25. von Heijne G. Transcending the impenetrable: how proteins come to terms with membranes. Biochim Biophys Acta. 1988 Jun 9;947(2):307–333. doi: 10.1016/0304-4157(88)90013-5. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES