Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Dec 15;90(24):12015–12019. doi: 10.1073/pnas.90.24.12015

Unresponsiveness of primitive chronic myeloid leukemia cells to macrophage inflammatory protein 1 alpha, an inhibitor of primitive normal hematopoietic cells.

C J Eaves 1, J D Cashman 1, S D Wolpe 1, A C Eaves 1
PMCID: PMC48116  PMID: 8265663

Abstract

Most primitive hematopoietic cells appear to be normally quiescent in vivo, whereas their leukemic counterparts in patients with chronic myeloid leukemia (CML) are maintained in a state of rapid turnover. This difference is also seen in the long-term culture system, where control of primitive hematopoietic progenitor proliferation is mediated by interactions of these cells with marrow-derived mesenchymal cells of the fibroblast lineage. We now show that exogenous addition of macrophage inflammatory protein 1 alpha (MIP-1 alpha) to normal long-term cultures can reversibly and specifically block the activation of "primitive" (high proliferative potential), but not "mature" (lower proliferative potential), progenitors in the adherent layer of these cultures. Moreover, addition of MIP-1 beta after primitive-progenitor activation can prevent the subsequent return of these cells to a quiescent state a few days later as shown previously in similar experiments using antibodies to transforming growth factor beta. This suggests that the level of MIP-1 alpha (or a related MIP-1 alpha agonist) produced in LTCs, like the level of transforming growth factor beta, may be necessary, but is not on its own sufficient, to mediate the inhibitory activity of the regulatory cells in the adherent layer. Addition of MIP-1 alpha to similar long-term cultures containing normal marrow adherent layers but supporting exclusively neoplastic (CML) hematopoiesis did not block the cycling of primitive neoplastic progenitors. A defect in the responsiveness of CML cells to MIP-1 alpha (or a similarly acting chemokine) would explain their deregulated proliferative behavior in this model and, by extrapolation to the in vivo setting, suggests a molecular mechanism whereby the leukemic clone may become amplified at the stem-cell level. In addition, these findings suggest approaches to the therapy of CML, using inhibitors such as MIP-1 alpha for the protection of primitive normal cells.

Full text

PDF
12015

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Broxmeyer H. E., Sherry B., Cooper S., Lu L., Maze R., Beckmann M. P., Cerami A., Ralph P. Comparative analysis of the human macrophage inflammatory protein family of cytokines (chemokines) on proliferation of human myeloid progenitor cells. Interacting effects involving suppression, synergistic suppression, and blocking of suppression. J Immunol. 1993 Apr 15;150(8 Pt 1):3448–3458. [PubMed] [Google Scholar]
  2. Broxmeyer H. E., Sherry B., Cooper S., Ruscetti F. W., Williams D. E., Arosio P., Kwon B. S., Cerami A. Macrophage inflammatory protein (MIP)-1 beta abrogates the capacity of MIP-1 alpha to suppress myeloid progenitor cell growth. J Immunol. 1991 Oct 15;147(8):2586–2594. [PubMed] [Google Scholar]
  3. Broxmeyer H. E., Sherry B., Lu L., Cooper S., Oh K. O., Tekamp-Olson P., Kwon B. S., Cerami A. Enhancing and suppressing effects of recombinant murine macrophage inflammatory proteins on colony formation in vitro by bone marrow myeloid progenitor cells. Blood. 1990 Sep 15;76(6):1110–1116. [PubMed] [Google Scholar]
  4. Cashman J. D., Eaves A. C., Eaves C. J. Granulocyte-macrophage colony-stimulating factor modulation of the inhibitory effect of transforming growth factor-beta on normal and leukemic human hematopoietic progenitor cells. Leukemia. 1992 Sep;6(9):886–892. [PubMed] [Google Scholar]
  5. Cashman J. D., Eaves A. C., Raines E. W., Ross R., Eaves C. J. Mechanisms that regulate the cell cycle status of very primitive hematopoietic cells in long-term human marrow cultures. I. Stimulatory role of a variety of mesenchymal cell activators and inhibitory role of TGF-beta. Blood. 1990 Jan 1;75(1):96–101. [PubMed] [Google Scholar]
  6. Cashman J., Eaves A. C., Eaves C. J. Regulated proliferation of primitive hematopoietic progenitor cells in long-term human marrow cultures. Blood. 1985 Oct;66(4):1002–1005. [PubMed] [Google Scholar]
  7. Coulombel L., Kalousek D. K., Eaves C. J., Gupta C. M., Eaves A. C. Long-term marrow culture reveals chromosomally normal hematopoietic progenitor cells in patients with Philadelphia chromosome-positive chronic myelogenous leukemia. N Engl J Med. 1983 Jun 23;308(25):1493–1498. doi: 10.1056/NEJM198306233082502. [DOI] [PubMed] [Google Scholar]
  8. Daley G. Q., Van Etten R. A., Baltimore D. Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science. 1990 Feb 16;247(4944):824–830. doi: 10.1126/science.2406902. [DOI] [PubMed] [Google Scholar]
  9. Dubé I. D., Kalousek D. K., Coulombel L., Gupta C. M., Eaves C. J., Eaves A. C. Cytogenetic studies of early myeloid progenitor compartments in Ph1-positive chronic myeloid leukemia. II. Long-term culture reveals the persistence of Ph1-negative progenitors in treated as well as newly diagnosed patients. Blood. 1984 May;63(5):1172–1177. [PubMed] [Google Scholar]
  10. Dunlop D. J., Wright E. G., Lorimore S., Graham G. J., Holyoake T., Kerr D. J., Wolpe S. D., Pragnell I. B. Demonstration of stem cell inhibition and myeloprotective effects of SCI/rhMIP1 alpha in vivo. Blood. 1992 May 1;79(9):2221–2225. [PubMed] [Google Scholar]
  11. Eaves A. C., Cashman J. D., Gaboury L. A., Kalousek D. K., Eaves C. J. Unregulated proliferation of primitive chronic myeloid leukemia progenitors in the presence of normal marrow adherent cells. Proc Natl Acad Sci U S A. 1986 Jul;83(14):5306–5310. doi: 10.1073/pnas.83.14.5306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Eaves C. J., Cashman J. D., Kay R. J., Dougherty G. J., Otsuka T., Gaboury L. A., Hogge D. E., Lansdorp P. M., Eaves A. C., Humphries R. K. Mechanisms that regulate the cell cycle status of very primitive hematopoietic cells in long-term human marrow cultures. II. Analysis of positive and negative regulators produced by stromal cells within the adherent layer. Blood. 1991 Jul 1;78(1):110–117. [PubMed] [Google Scholar]
  13. Elefanty A. G., Hariharan I. K., Cory S. bcr-abl, the hallmark of chronic myeloid leukaemia in man, induces multiple haemopoietic neoplasms in mice. EMBO J. 1990 Apr;9(4):1069–1078. doi: 10.1002/j.1460-2075.1990.tb08212.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gao J. L., Kuhns D. B., Tiffany H. L., McDermott D., Li X., Francke U., Murphy P. M. Structure and functional expression of the human macrophage inflammatory protein 1 alpha/RANTES receptor. J Exp Med. 1993 May 1;177(5):1421–1427. doi: 10.1084/jem.177.5.1421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gishizky M. L., Witte O. N. Initiation of deregulated growth of multipotent progenitor cells by bcr-abl in vitro. Science. 1992 May 8;256(5058):836–839. doi: 10.1126/science.1375394. [DOI] [PubMed] [Google Scholar]
  16. Goey H., Keller J. R., Back T., Longo D. L., Ruscetti F. W., Wiltrout R. H. Inhibition of early murine hemopoietic progenitor cell proliferation after in vivo locoregional administration of transforming growth factor-beta 1. J Immunol. 1989 Aug 1;143(3):877–880. [PubMed] [Google Scholar]
  17. Goto T., Nishikori M., Arlin Z., Gee T., Kempin S., Burchenal J., Strife A., Wisniewski D., Lambek C., Little C. Growth characteristics of leukemic and normal hematopoietic cells in Ph' + chronic myelogenous leukemia and effects of intensive treatment. Blood. 1982 Apr;59(4):793–808. [PubMed] [Google Scholar]
  18. Graham G. J., Pragnell I. B. SCI/MIP-1 alpha: a potent stem cell inhibitor with potential roles in development. Dev Biol. 1992 Jun;151(2):377–381. doi: 10.1016/0012-1606(92)90177-i. [DOI] [PubMed] [Google Scholar]
  19. Groffen J., Stephenson J. R., Heisterkamp N., de Klein A., Bartram C. R., Grosveld G. Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell. 1984 Jan;36(1):93–99. doi: 10.1016/0092-8674(84)90077-1. [DOI] [PubMed] [Google Scholar]
  20. Hogge D. E., Cashman J. D., Humphries R. K., Eaves C. J. Differential and synergistic effects of human granulocyte-macrophage colony-stimulating factor and human granulocyte colony-stimulating factor on hematopoiesis in human long-term marrow cultures. Blood. 1991 Feb 1;77(3):493–499. [PubMed] [Google Scholar]
  21. Kantarjian H. M., Vellekoop L., McCredie K. B., Keating M. J., Hester J., Smith T., Barlogie B., Trujillo J., Freireich E. J. Intensive combination chemotherapy (ROAP 10) and splenectomy in the management of chronic myelogenous leukemia. J Clin Oncol. 1985 Feb;3(2):192–200. doi: 10.1200/JCO.1985.3.2.192. [DOI] [PubMed] [Google Scholar]
  22. Keller J. R., Mcniece I. K., Sill K. T., Ellingsworth L. R., Quesenberry P. J., Sing G. K., Ruscetti F. W. Transforming growth factor beta directly regulates primitive murine hematopoietic cell proliferation. Blood. 1990 Feb 1;75(3):596–602. [PubMed] [Google Scholar]
  23. Kelliher M. A., McLaughlin J., Witte O. N., Rosenberg N. Induction of a chronic myelogenous leukemia-like syndrome in mice with v-abl and BCR/ABL. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6649–6653. doi: 10.1073/pnas.87.17.6649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lord B. I., Dexter T. M., Clements J. M., Hunter M. A., Gearing A. J. Macrophage-inflammatory protein protects multipotent hematopoietic cells from the cytotoxic effects of hydroxyurea in vivo. Blood. 1992 May 15;79(10):2605–2609. [PubMed] [Google Scholar]
  25. Migdalska A., Molineux G., Demuynck H., Evans G. S., Ruscetti F., Dexter T. M. Growth inhibitory effects of transforming growth factor-beta 1 in vivo. Growth Factors. 1991;4(3):239–245. doi: 10.3109/08977199109104820. [DOI] [PubMed] [Google Scholar]
  26. Neote K., DiGregorio D., Mak J. Y., Horuk R., Schall T. J. Molecular cloning, functional expression, and signaling characteristics of a C-C chemokine receptor. Cell. 1993 Feb 12;72(3):415–425. doi: 10.1016/0092-8674(93)90118-a. [DOI] [PubMed] [Google Scholar]
  27. Otsuka T., Eaves C. J., Humphries R. K., Hogge D. E., Eaves A. C. Lack of evidence for abnormal autocrine or paracrine mechanisms underlying the uncontrolled proliferation of primitive chronic myeloid leukemia progenitor cells. Leukemia. 1991 Oct;5(10):861–868. [PubMed] [Google Scholar]
  28. Raskind W. H., Fialkow P. J. The use of cell markers in the study of human hematopoietic neoplasia. Adv Cancer Res. 1987;49:127–167. doi: 10.1016/s0065-230x(08)60796-4. [DOI] [PubMed] [Google Scholar]
  29. Sing G. K., Keller J. R., Ellingsworth L. R., Ruscetti F. W. Transforming growth factor beta selectively inhibits normal and leukemic human bone marrow cell growth in vitro. Blood. 1988 Nov;72(5):1504–1511. [PubMed] [Google Scholar]
  30. Thomas E. D., Clift R. A., Fefer A., Appelbaum F. R., Beatty P., Bensinger W. I., Buckner C. D., Cheever M. A., Deeg H. J., Doney K. Marrow transplantation for the treatment of chronic myelogenous leukemia. Ann Intern Med. 1986 Feb;104(2):155–163. doi: 10.7326/0003-4819-104-2-155. [DOI] [PubMed] [Google Scholar]
  31. Udomsakdi C., Eaves C. J., Lansdorp P. M., Eaves A. C. Phenotypic heterogeneity of primitive leukemic hematopoietic cells in patients with chronic myeloid leukemia. Blood. 1992 Nov 15;80(10):2522–2530. [PubMed] [Google Scholar]
  32. de Klein A., van Kessel A. G., Grosveld G., Bartram C. R., Hagemeijer A., Bootsma D., Spurr N. K., Heisterkamp N., Groffen J., Stephenson J. R. A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukaemia. Nature. 1982 Dec 23;300(5894):765–767. doi: 10.1038/300765a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES