Abstract
The family Methanomicrobiaceae comprises hydrogen- and formate-utilizing methanogens. Genome sequencing of nine species of Methanomicrobiaceae has been conducted so far. Here, we report three additional draft genome sequences of Methanomicrobiaceae, those of Methanoculleus horonobensis JCM 15517 (=T10T), Methanoculleus thermophilus DSM 2373 (=CR-1T), and Methanofollis ethanolicus JCM 15103 (=HASUT).
GENOME ANNOUNCEMENT
Members of the family Methanomicrobiaceae in the phylum Euryarchaeota are known to contain hydrogen- and formate-utilizing methane-producing archaea (1). Some of the known species of this family can also use a secondary alcohol (such as ethanol, 1-propanol, and 1-butanol) as a methanogenic substrate. Currently, complete or draft genome sequences are available for nine species of Methanomicrobiaceae (2–6). To compare the genomic features of Methanomicrobiaceae species, we additionally sequenced three genomes, those of Methanoculleus horonobensis strain JCM 15517 T (=strain T10T), Methanoculleus thermophilus strain DSM 2373 (=CR-1T), and Methanofollis ethanolicus strain JCM 15103T (=HASUT). These strains were isolated from a variety of methanogenic ecosystems: strain T10T was isolated from a groundwater sample collected from a deep diatomaceous shale formation (7), strain CR-1T was isolated from coastal sediment underlying high-temperature effluent from nucleic power plants (8), and strain HASUT was isolated from a mud sample from a lotus field (9). Such ecological diversification may affect the genomic features involved in methanogenesis and interaction with syntrophic metabolizers (syntrophs).
Strains T10T and HASUT were provided by the RIKEN BRC through the National Bio-Resource Project of the MEXT, Japan. Strain CR-1T was provided by Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ), Germany. Whole-genome shotgun sequencing was conducted using the Illumina MiSeq platform (Illumina, San Diego, CA, USA) at the Fasmac Co., Ltd. (Atsugi, Japan). We constructed and sequenced paired-end libraries (4,506,900, 5,396,179, and 9,926,795 bp for T10T, CR-1T, and HASUT, respectively) on the MiSeq. Assembly of the output reads was performed using a SPAdes software version 3.5.0 (10), and the assembled data provide >1,000× coverage of each genome. The draft genome sequences of strains T10T, CR-1T, and HASUT are composed of a total of 15, 24, and 3 scaffolds, have a G+C content of 62.0, 59.3, and 60.3%, estimated genome sizes of 2.49, 2.22, and 2.75 Mb, and 2,430, 2,249, and 2,651 protein-coding genes with function prediction annotated by the Prokka pipeline (11), respectively. Further attempts to identify hydrogenotrophic methanogenesis pathways and energy conservation systems for comparison with the genomes of other Methanomicrobiaceae methanogens are now in progress.
Nucleotide sequence accession numbers.
This draft genome sequence has been deposited at DDBJ/GenBank/EMBL under the accession numbers BCNY01000001 to BCNY01000015 for M. horonobensis strain JCM 15517, BCNX01000001 to BCNX01000023 for M. thermophilus strain DSM 2373, and BCNW01000001 to BCNW01000003 for M. ethanolicus strain JCM 15103.
ACKNOWLEDGMENT
We thank Aya Akiba (AIST) for technical assistance.
Footnotes
Citation Narihiro T, Kusada H, Yoneda Y, Tamaki H. 2016. Draft genome sequences of Methanoculleus horonobensis strain JCM 15517, Methanoculleus thermophilus strain DSM 2373, and Methanofollis ethanolicus strain JCM 15103, hydrogenotrophic methanogens belonging to the family Methanomicrobiaceae. Genome Announc 4(2):e00199-16. doi:10.1128/genomeA.00199-16.
REFERENCES
- 1.Liu YC, Whitman WB. 2008. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann N Y Acad Sci 1125:171–189. doi: 10.1196/annals.1419.019. [DOI] [PubMed] [Google Scholar]
- 2.Maus I, Wibberg D, Stantscheff R, Eikmeyer FG, Seffner A, Boelter J, Szczepanowski R, Blom J, Jaenicke S, König H, Pühler A, Schlüter A. 2012. Complete genome sequence of the hydrogenotrophic, methanogenic archaeon Methanoculleus bourgensis strain MS2T, isolated from a sewage sludge digester. J Bacteriol 194:5487–5488. doi: 10.1128/JB.01292-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Göker M, Lu M, Fiebig A, Nolan M, Lapidus A, Tice H, Del Rio TG, Cheng JF, Han C, Tapia R, Goodwin LA, Pitluck S, Liolios K, Mavromatis K, Pagani I, Ivanova N, Mikhailova N, Pati A, Chen A, Palaniappan K, Land M, Mayilraj S, Rohde M, Detter JC, Bunk B, Spring S, Wirth R, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP. 2014. Genome sequence of the mud-dwelling archaeon Methanoplanus limicola type strain (DSM 2279T), reclassification of Methanoplanus petrolearius as Methanolacinia petrolearia and emended descriptions of the genera Methanoplanus and Methanolacinia. Stand Genomic Sci 9:1076–1088. doi: 10.4056/sigs.5138968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Brambilla E, Djao OD, Daligault H, Lapidus A, Lucas S, Hammon N, Nolan M, Tice H, Cheng JF, Han C, Tapia R, Goodwin L, Pitluck S, Liolios K, Ivanova N, Mavromatis K, Mikhailova N, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Rohde M, Spring S, Sikorski J, Goker M, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP. 2010. Complete genome sequence of Methanoplanus petrolearius type strain (SEBR 4847). Stand Genomic Sci 3:203–211. doi:10.4056/sigs.1183143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Tatusova T, Ciufo S, Fedorov B, O’Neill K, Tolstoy I. 2014. RefSeq microbial genomes database: new representation and annotation strategy. Nucleic Acids Res 42:D553–D559. doi: 10.1093/nar/gkt1274. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Anderson IJ, Sieprawska-Lupa M, Lapidus A, Nolan M, Copeland A, Glavina Del Rio T, Tice H, Dalin E, Barry K, Saunders E, Han C, Brettin T, Detter JC, Bruce D, Mikhailova N, Pitluck S, Hauser L, Land M, Lucas S, Richardson P, Whitman WB, Kyrpides NC. 2009. Complete genome sequence of Methanoculleus marisnigri Romesser et al. 1981 type strain JR1. Stand Genomic Sci 1:189–196. doi: 10.4056/sigs.32535. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Shimizu S, Ueno A, Tamamura S, Naganuma T, Kaneko K. 2013. Methanoculleus horonobensis sp. nov., a methanogenic archaeon isolated from a deep diatomaceous shale formation. Int J Syst Evol Microbiol 63:4320–4323. doi: 10.1099/ijs.0.053520-0. [DOI] [PubMed] [Google Scholar]
- 8.Rivard CJ, Smith PH. 1982. Isolation and characterization of a thermophilic marine methanogenic bacterium, Methanogenium thermophilicum sp. nov. Int J Syst Bacteriol 32:430–436. doi: 10.1099/00207713-32-4-430. [DOI] [Google Scholar]
- 9.Imachi H, Sakai S, Nagai H, Yamaguchi T, Takai K. 2009. Methanofollis ethanolicus sp. nov., an ethanol-utilizing methanogen isolated from a lotus field. Int J Syst Evol Microbiol 59:800–805. doi: 10.1099/ijs.0.003731-0. [DOI] [PubMed] [Google Scholar]
- 10.Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. doi: 10.1089/cmb.2012.0021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. doi: 10.1093/bioinformatics/btu153. [DOI] [PubMed] [Google Scholar]