Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 Jan 1;89(1):142–146. doi: 10.1073/pnas.89.1.142

Molecular cloning of the pheromone biosynthesis-activating neuropeptide in Helicoverpa zea.

M T Davis 1, V N Vakharia 1, J Henry 1, T G Kempe 1, A K Raina 1
PMCID: PMC48192  PMID: 1729680

Abstract

Pheromone biosynthesis-activating neuropeptide (PBAN) regulates sex pheromone biosynthesis in female Helicoverpa (Heliothis) zea. Two oligonucleotide probes representing two overlapping amino acid regions of PBAN were used to screen 2.5 x 10(5) recombinant plaques, and a positive recombinant clone was isolated. Sequence analysis of the isolated clone showed that the PBAN gene is interrupted after the codon encoding amino acid 14 by a 0.63-kilobase (kb) intron. Preceding the PBAN amino acid sequence is a 10-amino acid sequence containing a pentapeptide Phe-Thr-Pro-Arg-Leu, which is followed by a Gly-Arg-Arg processing site. Immediately after the PBAN amino acid sequence is a Gly-Arg processing site and a short stretch of 10 amino acids. This 10-amino acid sequence contains a repeat of the PBAN C-terminal pentapeptide Phe-Ser-Pro-Arg-Leu and is terminated by another Gly-Arg processing site. It is suggested that the PBAN gene in H. zea might carry, besides PBAN, a 7- and an 8-residue amidated peptide, which share with PBAN the core C-terminal pentapeptide Phe-(Ser or Thr)-Pro-Arg-Leu-NH2. The C-terminal pentapeptide sequence of PBAN represents the minimum sequence required for pheromonotropic activity in H. zea and also bears a high degree of homology to the pyrokinin family of insect peptides with myotropic activity. It is possible that the putative heptapeptide and octapeptide might be new members of the pyrokinin family, with pheromonotropic and/or myotropic activities. Thus, the PBAN gene products, besides affecting sexual behavior, might have broad influence on many biological processes in H. zea.

Full text

PDF
142

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradbury A. F., Finnie M. D., Smyth D. G. Mechanism of C-terminal amide formation by pituitary enzymes. Nature. 1982 Aug 12;298(5875):686–688. doi: 10.1038/298686a0. [DOI] [PubMed] [Google Scholar]
  2. Bradfield J. Y., Keeley L. L. Adipokinetic hormone gene sequence from Manduca sexta. J Biol Chem. 1989 Aug 5;264(22):12791–12793. [PubMed] [Google Scholar]
  3. Breathnach R., Chambon P. Organization and expression of eucaryotic split genes coding for proteins. Annu Rev Biochem. 1981;50:349–383. doi: 10.1146/annurev.bi.50.070181.002025. [DOI] [PubMed] [Google Scholar]
  4. Collins M. L., Hunsaker W. R. Improved hybridization assays employing tailed oligonucleotide probes: a direct comparison with 5'-end-labeled oligonucleotide probes and nick-translated plasmid probes. Anal Biochem. 1985 Dec;151(2):211–224. doi: 10.1016/0003-2697(85)90168-x. [DOI] [PubMed] [Google Scholar]
  5. Devlin P. E., Ramachandran K. L., Cate R. L. Southern analysis of genomic DNA with unique and degenerate oligonucleotide probes: a method for reducing probe degeneracy. DNA. 1988 Sep;7(7):499–507. doi: 10.1089/dna.1.1988.7.499. [DOI] [PubMed] [Google Scholar]
  6. Fisher J. M., Scheller R. H. Prohormone processing and the secretory pathway. J Biol Chem. 1988 Nov 15;263(32):16515–16518. [PubMed] [Google Scholar]
  7. Horodyski F. M., Riddiford L. M., Truman J. W. Isolation and expression of the eclosion hormone gene from the tobacco hornworm, Manduca sexta. Proc Natl Acad Sci U S A. 1989 Oct;86(20):8123–8127. doi: 10.1073/pnas.86.20.8123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jacobs K. A., Rudersdorf R., Neill S. D., Dougherty J. P., Brown E. L., Fritsch E. F. The thermal stability of oligonucleotide duplexes is sequence independent in tetraalkylammonium salt solutions: application to identifying recombinant DNA clones. Nucleic Acids Res. 1988 May 25;16(10):4637–4650. doi: 10.1093/nar/16.10.4637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kawakami A., Iwami M., Nagasawa H., Suzuki A., Ishizaki H. Structure and organization of four clustered genes that encode bombyxin, an insulin-related brain secretory peptide of the silkmoth Bombyx mori. Proc Natl Acad Sci U S A. 1989 Sep;86(18):6843–6847. doi: 10.1073/pnas.86.18.6843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kawakami A., Kataoka H., Oka T., Mizoguchi A., Kimura-Kawakami M., Adachi T., Iwami M., Nagasawa H., Suzuki A., Ishizaki H. Molecular cloning of the Bombyx mori prothoracicotropic hormone. Science. 1990 Mar 16;247(4948):1333–1335. doi: 10.1126/science.2315701. [DOI] [PubMed] [Google Scholar]
  11. Kitamura A., Nagasawa H., Kataoka H., Inoue T., Matsumoto S., Ando T., Suzuki A. Amino acid sequence of pheromone-biosynthesis-activating neuropeptide (PBAN) of the silkworm, Bombyx mori. Biochem Biophys Res Commun. 1989 Aug 30;163(1):520–526. doi: 10.1016/0006-291x(89)92168-2. [DOI] [PubMed] [Google Scholar]
  12. Nachman R. J., Roberts V. A., Dyson H. J., Holman G. M., Tainer J. A. Active conformation of an insect neuropeptide family. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4518–4522. doi: 10.1073/pnas.88.10.4518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nichols R., Dixon J. E. Rapid identification of clones using the same degenerate oligonucleotide mixture for both screening and sequencing. Anal Biochem. 1988 Apr;170(1):110–115. doi: 10.1016/0003-2697(88)90096-6. [DOI] [PubMed] [Google Scholar]
  14. Nichols R., Schneuwly S. A., Dixon J. E. Identification and characterization of a Drosophila homologue to the vertebrate neuropeptide cholecystokinin. J Biol Chem. 1988 Sep 5;263(25):12167–12170. [PubMed] [Google Scholar]
  15. Raina A. K., Jaffe H., Kempe T. G., Keim P., Blacher R. W., Fales H. M., Riley C. T., Klun J. A., Ridgway R. L., Hayes D. K. Identification of a neuropeptide hormone that regulates sex pheromone production in female moths. Science. 1989 May 19;244(4906):796–798. doi: 10.1126/science.244.4906.796. [DOI] [PubMed] [Google Scholar]
  16. Raina A. K., Klun J. A. Brain factor control of sex pheromone production in the female corn earworm moth. Science. 1984 Aug 3;225(4661):531–533. doi: 10.1126/science.225.4661.531. [DOI] [PubMed] [Google Scholar]
  17. Schneider L. E., Taghert P. H. Organization and expression of the Drosophila Phe-Met-Arg-Phe-NH2 neuropeptide gene. J Biol Chem. 1990 Apr 25;265(12):6890–6895. [PubMed] [Google Scholar]
  18. Tang J. D., Charlton R. E., Jurenka R. A., Wolf W. A., Phelan P. L., Sreng L., Roelofs W. L. Regulation of pheromone biosynthesis by a brain hormone in two moth species. Proc Natl Acad Sci U S A. 1989 Mar;86(6):1806–1810. doi: 10.1073/pnas.86.6.1806. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES