Abstract
The Fab fragment of a monoclonal antibody (mAb) reactive to the N-terminal half (residues 180-310) of the protease domain of human factor IX has been previously shown to inhibit the binding of factor IXa to its cofactor, factor VIIIa. These data suggested that this segment of factor IXa may participate in binding to factor VIIIa. We now report that the binding rate (kon) of the mAb is 3-fold higher in the presence of Ca2+ than in its absence for both factors IX and IXa; the half-maximal effect was observed at approximately 300 microM Ca2+. Furthermore, the off rate (koff) of the mAb is 10-fold higher for factor IXa than for factor IX with or without Ca2+. Moreover, like the kon for mAb binding, the incorporation of dansyl-Glu-Gly-Arg chloromethyl ketone (dEGR-CK) into factor IXa was approximately 3 times faster in the presence of Ca2+ than in its absence. Since steric factors govern the kon and the strength of noncovalent interactions governs the koff, the data indicate that the region of factor IX at residues 180-310 undergoes two separate conformational changes before expression of its biologic activity: one upon Ca2+ binding and the other upon zymogen activation. Furthermore, the dEGF-CK incorporation data suggest that both conformational changes also affect the active site residues. Analyses of the known three-dimensional structures of serine proteases indicate that in human factor IX a high-affinity Ca(2+)-binding site may be formed by the carboxyl groups of glutamates 235 and 245 and by the main chain carbonyl oxygens of residues 237 and 240. In support of this conclusion, a synthetic peptide including residues 231-265 was shown to bind Ca2+ with a Kd of approximately 500 microM. This peptide also bound to the mAb, although with approximately 500-fold reduced affinity. Moreover, like factor IX, the peptide bound to the mAb more strongly (approximately 3-fold) in the presence of Ca2+ than in its absence. Thus, it appears that a part of the epitope for the mAb described above is contained in the proposed Ca(2+)-binding site in the protease domain of human factor IX. This proposed site is analogous to the Ca(2+)-binding site in trypsin and elastase, and it may be involved in binding factor IXa to factor VIIIa.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amphlett G. W., Byrne R., Castellino F. J. The binding of metal ions to bovine factor IX. J Biol Chem. 1978 Oct 10;253(19):6774–6779. [PubMed] [Google Scholar]
- Amphlett G. W., Kisiel W., Castellino F. J. The interaction of Ca2+ with human Factor IX. Arch Biochem Biophys. 1981 May;208(2):576–585. doi: 10.1016/0003-9861(81)90546-4. [DOI] [PubMed] [Google Scholar]
- Bajaj S. P., Butkowski R. J., Mann K. G. Prothrombin fragments. Ca2+ binding and activation kinetics. J Biol Chem. 1975 Mar 25;250(6):2150–2156. [PubMed] [Google Scholar]
- Bajaj S. P. Cooperative Ca2+ binding to human factor IX. Effects of Ca2+ on the kinetic parameters of the activation of factor IX by factor XIa. J Biol Chem. 1982 Apr 25;257(8):4127–4132. [PubMed] [Google Scholar]
- Bajaj S. P., Rapaport S. I., Maki S. L. A monoclonal antibody to factor IX that inhibits the factor VIII:Ca potentiation of factor X activation. J Biol Chem. 1985 Sep 25;260(21):11574–11580. [PubMed] [Google Scholar]
- Bajaj S. P., Rapaport S. I., Prodanos C. A simplified procedure for purification of human prothrombin, factor IX and factor X. Prep Biochem. 1981;11(4):397–412. doi: 10.1080/00327488108065531. [DOI] [PubMed] [Google Scholar]
- Bajaj S. P., Rapaport S. I., Prodonos C., Russell W. A. Heterogeneity in human prothrombin: analysis of cause. Blood. 1981 Nov;58(5):886–891. [PubMed] [Google Scholar]
- Bajaj S. P., Rapaport S. I., Russell W. A. Redetermination of the rate-limiting step in the activation of factor IX by factor XIa and by factor VIIa/tissue factor. Explanation for different electrophoretic radioactivity profiles obtained on activation of 3H- and 125I-labeled factor IX. Biochemistry. 1983 Aug 16;22(17):4047–4053. doi: 10.1021/bi00286a009. [DOI] [PubMed] [Google Scholar]
- Bajaj S. P., Spitzer S. G., Welsh W. J., Warn-Cramer B. J., Kasper C. K., Birktoft J. J. Experimental and theoretical evidence supporting the role of Gly363 in blood coagulation factor IXa (Gly193 in chymotrypsin) for proper activation of the proenzyme. J Biol Chem. 1990 Feb 15;265(5):2956–2961. [PubMed] [Google Scholar]
- Birktoft J. J., Blow D. M. Structure of crystalline -chymotrypsin. V. The atomic structure of tosyl- -chymotrypsin at 2 A resolution. J Mol Biol. 1972 Jul 21;68(2):187–240. doi: 10.1016/0022-2836(72)90210-0. [DOI] [PubMed] [Google Scholar]
- Blevins R. A., Tulinsky A. The refinement and the structure of the dimer of alpha-chymotrypsin at 1.67-A resolution. J Biol Chem. 1985 Apr 10;260(7):4264–4275. doi: 10.2210/pdb5cha/pdb. [DOI] [PubMed] [Google Scholar]
- Bode W., Mayr I., Baumann U., Huber R., Stone S. R., Hofsteenge J. The refined 1.9 A crystal structure of human alpha-thrombin: interaction with D-Phe-Pro-Arg chloromethylketone and significance of the Tyr-Pro-Pro-Trp insertion segment. EMBO J. 1989 Nov;8(11):3467–3475. doi: 10.1002/j.1460-2075.1989.tb08511.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bode W., Schwager P. The single calcium-binding site of crystallin bovin beta-trypsin. FEBS Lett. 1975 Aug 1;56(1):139–143. doi: 10.1016/0014-5793(75)80128-1. [DOI] [PubMed] [Google Scholar]
- Brünger A. T. Crystallographic refinement by simulated annealing. Application to a 2.8 A resolution structure of aspartate aminotransferase. J Mol Biol. 1988 Oct 5;203(3):803–816. doi: 10.1016/0022-2836(88)90211-2. [DOI] [PubMed] [Google Scholar]
- Di Scipio R. G., Kurachi K., Davie E. W. Activation of human factor IX (Christmas factor). J Clin Invest. 1978 Jun;61(6):1528–1538. doi: 10.1172/JCI109073. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Foster D., Davie E. W. Characterization of a cDNA coding for human protein C. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4766–4770. doi: 10.1073/pnas.81.15.4766. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frazier D., Smith K. J., Cheung W. F., Ware J., Lin S. W., Thompson A. R., Reisner H., Bajaj S. P., Stafford D. W. Mapping of monoclonal antibodies to human factor IX. Blood. 1989 Aug 15;74(3):971–977. [PubMed] [Google Scholar]
- Furie B., Furie B. C. The molecular basis of blood coagulation. Cell. 1988 May 20;53(4):505–518. doi: 10.1016/0092-8674(88)90567-3. [DOI] [PubMed] [Google Scholar]
- Goodwin T. W., Morton R. A. The spectrophotometric determination of tyrosine and tryptophan in proteins. Biochem J. 1946;40(5-6):628–632. doi: 10.1042/bj0400628. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gorka J., McCourt D. W., Schwartz B. D. Automated synthesis of a C-terminal photoprobe using combined Fmoc and t-Boc synthesis strategies on a single automated peptide synthesizer. Pept Res. 1989 Nov-Dec;2(6):376–380. [PubMed] [Google Scholar]
- Handford P. A., Baron M., Mayhew M., Willis A., Beesley T., Brownlee G. G., Campbell I. D. The first EGF-like domain from human factor IX contains a high-affinity calcium binding site. EMBO J. 1990 Feb;9(2):475–480. doi: 10.1002/j.1460-2075.1990.tb08133.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson A. E., Esmon N. L., Laue T. M., Esmon C. T. Structural changes required for activation of protein C are induced by Ca2+ binding to a high affinity site that does not contain gamma-carboxyglutamic acid. J Biol Chem. 1983 May 10;258(9):5554–5560. [PubMed] [Google Scholar]
- Kurachi K., Davie E. W. Activation of human factor XI (plasma thromboplastin antecedent) by factor XIIa (activated Hageman factor). Biochemistry. 1977 Dec 27;16(26):5831–5839. doi: 10.1021/bi00645a030. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Leytus S. P., Foster D. C., Kurachi K., Davie E. W. Gene for human factor X: a blood coagulation factor whose gene organization is essentially identical with that of factor IX and protein C. Biochemistry. 1986 Sep 9;25(18):5098–5102. doi: 10.1021/bi00366a018. [DOI] [PubMed] [Google Scholar]
- Mangel W. F., Singer P. T., Cyr D. M., Umland T. C., Toledo D. L., Stroud R. M., Pflugrath J. W., Sweet R. M. Structure of an acyl-enzyme intermediate during catalysis: (guanidinobenzoyl)trypsin. Biochemistry. 1990 Sep 11;29(36):8351–8357. doi: 10.1021/bi00488a022. [DOI] [PubMed] [Google Scholar]
- Mann K. G., Elion J., Butkowski R. J., Downing M., Nesheim M. E. Prothrombin. Methods Enzymol. 1981;80(Pt 100):286–302. doi: 10.1016/s0076-6879(81)80025-0. [DOI] [PubMed] [Google Scholar]
- Mann K. G., Nesheim M. E., Church W. R., Haley P., Krishnaswamy S. Surface-dependent reactions of the vitamin K-dependent enzyme complexes. Blood. 1990 Jul 1;76(1):1–16. [PubMed] [Google Scholar]
- Morita T., Isaacs B. S., Esmon C. T., Johnson A. E. Derivatives of blood coagulation factor IX contain a high affinity Ca2+-binding site that lacks gamma-carboxyglutamic acid. J Biol Chem. 1984 May 10;259(9):5698–5704. [PubMed] [Google Scholar]
- Nishimura H., Kawabata S., Kisiel W., Hase S., Ikenaka T., Takao T., Shimonishi Y., Iwanaga S. Identification of a disaccharide (Xyl-Glc) and a trisaccharide (Xyl2-Glc) O-glycosidically linked to a serine residue in the first epidermal growth factor-like domain of human factors VII and IX and protein Z and bovine protein Z. J Biol Chem. 1989 Dec 5;264(34):20320–20325. [PubMed] [Google Scholar]
- Rees D. J., Jones I. M., Handford P. A., Walter S. J., Esnouf M. P., Smith K. J., Brownlee G. G. The role of beta-hydroxyaspartate and adjacent carboxylate residues in the first EGF domain of human factor IX. EMBO J. 1988 Jul;7(7):2053–2061. doi: 10.1002/j.1460-2075.1988.tb03045.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sarkar G., Koeberl D. D., Sommer S. S. Direct sequencing of the activation peptide and the catalytic domain of the factor IX gene in six species. Genomics. 1990 Jan;6(1):133–143. doi: 10.1016/0888-7543(90)90458-7. [DOI] [PubMed] [Google Scholar]
- Spitzer S. G., Kuppuswamy M. N., Saini R., Kasper C. K., Birktoft J. J., Bajaj S. P. Factor IXHollywood: substitution of Pro55 by Ala in the first epidermal growth factor-like domain. Blood. 1990 Oct 15;76(8):1530–1537. [PubMed] [Google Scholar]
- Stein P. E., Leslie A. G., Finch J. T., Turnell W. G., McLaughlin P. J., Carrell R. W. Crystal structure of ovalbumin as a model for the reactive centre of serpins. Nature. 1990 Sep 6;347(6288):99–102. doi: 10.1038/347099a0. [DOI] [PubMed] [Google Scholar]
- Sugo T., Björk I., Holmgren A., Stenflo J. Calcium-binding properties of bovine factor X lacking the gamma-carboxyglutamic acid-containing region. J Biol Chem. 1984 May 10;259(9):5705–5710. [PubMed] [Google Scholar]
- Thim L., Bjoern S., Christensen M., Nicolaisen E. M., Lund-Hansen T., Pedersen A. H., Hedner U. Amino acid sequence and posttranslational modifications of human factor VIIa from plasma and transfected baby hamster kidney cells. Biochemistry. 1988 Oct 4;27(20):7785–7793. doi: 10.1021/bi00420a030. [DOI] [PubMed] [Google Scholar]
- Warn-Cramer B. J., Bajaj S. P. Stoichiometry of binding of high molecular weight kininogen to factor XI/XIa. Biochem Biophys Res Commun. 1985 Dec 17;133(2):417–422. doi: 10.1016/0006-291x(85)90922-2. [DOI] [PubMed] [Google Scholar]
- Wildgoose P., Kazim A. L., Kisiel W. The importance of residues 195-206 of human blood clotting factor VII in the interaction of factor VII with tissue factor. Proc Natl Acad Sci U S A. 1990 Sep;87(18):7290–7294. doi: 10.1073/pnas.87.18.7290. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu Q. Y., Sheehan J. P., Tsiang M., Lentz S. R., Birktoft J. J., Sadler J. E. Single amino acid substitutions dissociate fibrinogen-clotting and thrombomodulin-binding activities of human thrombin. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6775–6779. doi: 10.1073/pnas.88.15.6775. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshitake S., Schach B. G., Foster D. C., Davie E. W., Kurachi K. Nucleotide sequence of the gene for human factor IX (antihemophilic factor B). Biochemistry. 1985 Jul 2;24(14):3736–3750. doi: 10.1021/bi00335a049. [DOI] [PubMed] [Google Scholar]