Abstract
Lutropin (LH) bears asparagine-linked oligosaccharides terminating with the unique sequence SO4-4GalNAc beta 1-4GlcNAc beta 1-2Man alpha, whereas follitropin (FSH) bears oligosaccharides terminating predominantly with the sequence Sia alpha-Gal beta 1-4GlcNAc beta 1-2Man alpha, where Sia is sialic acid. We previously identified a glycoprotein-hormone-specific N-acetylgalactosamine-transferase (GalNAc-transferase) that recognizes a peptide-recognition marker(s) present on the common glycoprotein hormone alpha subunit and beta subunits of human chorionic gonadotropin and LH but not on the beta subunit of FSH. We have now identified an amino acid sequence motif, Pro-Leu-Arg, that is essential for recognition by the GalNAc-transferase. This tripeptide sequence is found 6-9 residues on the amino-terminal side of a glycosylated asparagine on the alpha subunit and beta subunits of LH and human chorionic gonadotropin but is not present on the beta subunit of FSH. The presence of this motif accounts for the differences in LH and FSH oligosaccharide structures. Additional proteins containing this recognition motif have been identified and were determined to bear sulfated oligosaccharides with the same structures as those on the glycoprotein hormones, indicating that these structures are not restricted to the glycoprotein hormones.
Full text
PDF![329](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b380/48230/adb5fed113ba/pnas01075-0345.png)
![330](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b380/48230/3bdf1bb9b15c/pnas01075-0346.png)
![331](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b380/48230/eb0afc23b1fa/pnas01075-0347.png)
![332](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b380/48230/d0a73d786be1/pnas01075-0348.png)
![333](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b380/48230/11b7a39a9c07/pnas01075-0349.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baenziger J. U., Green E. D. Pituitary glycoprotein hormone oligosaccharides: structure, synthesis and function of the asparagine-linked oligosaccharides on lutropin, follitropin and thyrotropin. Biochim Biophys Acta. 1988 Jun 9;947(2):287–306. doi: 10.1016/0304-4157(88)90012-3. [DOI] [PubMed] [Google Scholar]
- Baenziger J. U., Kumar S., Brodbeck R. M., Smith P. L., Beranek M. C. Circulatory half-life but not interaction with the lutropin/chorionic gonadotropin receptor is modulated by sulfation of bovine lutropin oligosaccharides. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):334–338. doi: 10.1073/pnas.89.1.334. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beyer T. A., Sadler J. E., Rearick J. I., Paulson J. C., Hill R. L. Glycosyltransferases and their use in assessing oligosaccharide structure and structure-function relationships. Adv Enzymol Relat Areas Mol Biol. 1981;52:23–175. doi: 10.1002/9780470122976.ch2. [DOI] [PubMed] [Google Scholar]
- Bourbonnais Y., Crine P. Post-translational incorporation of [35S]sulfate into oligosaccharide side chains of pro-opiomelanocortin in rat intermediate lobe cells. J Biol Chem. 1985 May 10;260(9):5832–5837. [PubMed] [Google Scholar]
- Childs G. V., Ellison D. G., Garner L. L. An immunocytochemist's view of gonadotropin storage in the adult male rat: cytochemical and morphological heterogeneity in serially sectioned gonadotropes. Am J Anat. 1980 Aug;158(4):397–409. doi: 10.1002/aja.1001580403. [DOI] [PubMed] [Google Scholar]
- Green E. D., Baenziger J. U. Asparagine-linked oligosaccharides on lutropin, follitropin, and thyrotropin. I. Structural elucidation of the sulfated and sialylated oligosaccharides on bovine, ovine, and human pituitary glycoprotein hormones. J Biol Chem. 1988 Jan 5;263(1):25–35. [PubMed] [Google Scholar]
- Green E. D., Baenziger J. U. Asparagine-linked oligosaccharides on lutropin, follitropin, and thyrotropin. II. Distributions of sulfated and sialylated oligosaccharides on bovine, ovine, and human pituitary glycoprotein hormones. J Biol Chem. 1988 Jan 5;263(1):36–44. [PubMed] [Google Scholar]
- Patthy L., Smith E. L. Reversible modification of arginine residues. Application to sequence studies by restriction of tryptic hydrolysis to lysine residues. J Biol Chem. 1975 Jan 25;250(2):557–564. [PubMed] [Google Scholar]
- Pierce J. G., Parsons T. F. Glycoprotein hormones: structure and function. Annu Rev Biochem. 1981;50:465–495. doi: 10.1146/annurev.bi.50.070181.002341. [DOI] [PubMed] [Google Scholar]
- Smith P. L., Baenziger J. U. A pituitary N-acetylgalactosamine transferase that specifically recognizes glycoprotein hormones. Science. 1988 Nov 11;242(4880):930–933. doi: 10.1126/science.2460923. [DOI] [PubMed] [Google Scholar]
- Smith P. L., Baenziger J. U. Recognition by the glycoprotein hormone-specific N-acetylgalactosaminetransferase is independent of hormone native conformation. Proc Natl Acad Sci U S A. 1990 Sep;87(18):7275–7279. doi: 10.1073/pnas.87.18.7275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith P. L., Kaetzel D., Nilson J., Baenziger J. U. The sialylated oligosaccharides of recombinant bovine lutropin modulate hormone bioactivity. J Biol Chem. 1990 Jan 15;265(2):874–881. [PubMed] [Google Scholar]
- Toi K., Bynum E., Norris E., Itano H. A. Studies on the chemical modification of arginine. I. The reaction of 1,2-cyclohexanedione with arginine and arginyl residues of proteins. J Biol Chem. 1967 Mar 10;242(5):1036–1043. [PubMed] [Google Scholar]
- Wun T. C., Kretzmer K. K., Girard T. J., Miletich J. P., Broze G. J., Jr Cloning and characterization of a cDNA coding for the lipoprotein-associated coagulation inhibitor shows that it consists of three tandem Kunitz-type inhibitory domains. J Biol Chem. 1988 May 5;263(13):6001–6004. [PubMed] [Google Scholar]