Skip to main content
British Heart Journal logoLink to British Heart Journal
. 1981 Mar;45(3):271–280. doi: 10.1136/hrt.45.3.271

Variability of electrocardiographic and enzyme evolution of myocardial infarction in man.

S Yusuf, R Lopez, A Maddison, P Sleight
PMCID: PMC482523  PMID: 7470340

Abstract

We have studied the time course of development of ST segment elevation, R wave loss, and Q wave development in 41 patients using 35 lead praecordial mapping or 12 lead electrocardiograms in those with anterior and inferior infarcts, respectively. The first recording was at a mean time of six hours after the onset of pain; subsequent records were taken every eight hours for 24 hours, every 12 hours for the second day, and every day thereafter. Serial CK MB estimates were obtained at every four hours for the first 72 hours. There was good agreement in the time course between the electrocardiogram and enzyme evolution. Forty-one per cent of patients showed rapid infarction with R wave and Q wave evolution complete within 12 hours of pain and accompanied by a short duration of enzyme release (mean = 19.30 hours). Fifty-nine per cent of patients showed more prolonged infarction with longer R wave and Q wave evolution and enzyme release (mean = 30 hours). Four patients also showed delayed reinfarction. ST segment elevation was maximal at six hours in the whole group and was significantly lower thereafter. Patients with rapid infarction showed high initial ST segment elevation which decreased promptly compared with those with prolonged infarction, who showed moderate but more persistent ST segment elevation. This study shows the variability in the time course of the electrocardiogram and enzyme evolution after myocardial infarction in man.

Full text

PDF
271

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong A., Duncan B., Oliver M. F., Julian D. G., Donald K. W., Fulton M., Lutz W., Morrison S. L. Natural history of acute coronary heart attacks. A community study. Br Heart J. 1972 Jan;34(1):67–80. doi: 10.1136/hrt.34.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Askenazi J., Maroko P. R., Lesch M., Braunwald E. Usefulness of ST segment elevations as predictors of electrocardiographic signs of necrosis in patients with acute myocardial infarction. Br Heart J. 1977 Jul;39(7):764–770. doi: 10.1136/hrt.39.7.764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baroldi G. Different types of myocardial necrosis in coronary heart disease: a pathophysiologic review of their functional significance. Am Heart J. 1975 Jun;89(6):742–752. doi: 10.1016/0002-8703(75)90189-1. [DOI] [PubMed] [Google Scholar]
  4. Cobb F. R., Irvin R. G., Hagerty R. C., Roe C. C. Effect of extension of infarction on serial CK activity. Circulation. 1979 Jul;60(1):145–154. doi: 10.1161/01.cir.60.1.145. [DOI] [PubMed] [Google Scholar]
  5. Essen R., Merx W., Effert S. Spontaneous course of ST-segment elevation in acute anterior myocardial infarction. Circulation. 1979 Jan;59(1):105–112. doi: 10.1161/01.cir.59.1.105. [DOI] [PubMed] [Google Scholar]
  6. Flaherty J. T., Reid P. R., Kelly D. T., Taylor D. R., Weisfeldt M. L., Pitt B. Intravenous nitroglycerin in acute myocardial infarction. Circulation. 1975 Jan;51(1):132–139. doi: 10.1161/01.cir.51.1.132. [DOI] [PubMed] [Google Scholar]
  7. Henning H., Hardarson T., Francis G., O'Rourke R. A., Ryan W., Ross J., Jr Approach to the estimation of myocardial infarct size by analysis of precordial S-T segment and R wave maps. Am J Cardiol. 1978 Jan;41(1):1–8. doi: 10.1016/0002-9149(78)90124-8. [DOI] [PubMed] [Google Scholar]
  8. Hillis L. D., Fishbein M. C., Braunwald E., Maroko P. R. The influence of the time interval between coronary artery occlusion and the administration of hyaluronidase on salvage of ischemic myocardium in dogs. Circ Res. 1977 Jul;41(1):26–31. doi: 10.1161/01.res.41.1.26. [DOI] [PubMed] [Google Scholar]
  9. Inoue M., Hori M., Fukui S., Abe H., Minamino T. Evaluation of evolution of myocardial infarction by serial determinations of serum creatine kinase activity. Br Heart J. 1977 May;39(5):485–492. doi: 10.1136/hrt.39.5.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Madias J. E., Hood W. B., Jr Precordial ST-segment mapping 3. Stability of maps in the early phase of acute myocardial infarction. Am Heart J. 1977 May;93(5):603–609. doi: 10.1016/s0002-8703(77)80011-2. [DOI] [PubMed] [Google Scholar]
  11. Maroko P. R., Kjekshus J. K., Sobel B. E., Watanabe T., Covell J. W., Ross J., Jr, Braunwald E. Factors influencing infarct size following experimental coronary artery occlusions. Circulation. 1971 Jan;43(1):67–82. doi: 10.1161/01.cir.43.1.67. [DOI] [PubMed] [Google Scholar]
  12. Miura M., Thomas R., Ganz W., Sokol T., Shell W. E., Toshimitsu T., Kwan A. C., Singh B. N. The effect of delay in propranolol administration on reduction of myocardial infarct size after experimental coronary artery occlusion in dogs. Circulation. 1979 Jun;59(6):1148–1157. doi: 10.1161/01.cir.59.6.1148. [DOI] [PubMed] [Google Scholar]
  13. Muller J. E., Maroko P. R., Braunwald E. Precordial electrocardiographic mapping. A technique to assess the efficacy of interventions designed to limit infarct size. Circulation. 1978 Jan;57(1):1–18. doi: 10.1161/01.cir.57.1.1. [DOI] [PubMed] [Google Scholar]
  14. Norris R. M., Whitlock R. M., Barratt-Boyes C., Small C. W. Clinical measurement of myocardial infarct size. Modification of a method for the estimation of total creatine phosphokinase release after myocardial infarction. Circulation. 1975 Apr;51(4):614–620. doi: 10.1161/01.cir.51.4.614. [DOI] [PubMed] [Google Scholar]
  15. OLIVER I. T. A spectrophotometric method for the determination of creatine phosphokinase and myokinase. Biochem J. 1955 Sep;61(1):116–122. doi: 10.1042/bj0610116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Roe C. R., Cobb F. R., Starmer C. F. The relationship between enzymatic and histologic estimates of the extent of myocardial infarction in conscious dogs with permanent coronary occlusion. Circulation. 1977 Mar;55(3):438–449. doi: 10.1161/01.cir.55.3.438. [DOI] [PubMed] [Google Scholar]
  17. Selwyn A. P., Fox K., Welman E., Shillingford J. P. Natural history and evaluation of Q waves during acute myocardial infarction. Br Heart J. 1978 Apr;40(4):383–387. doi: 10.1136/hrt.40.4.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Selwyn A. P., Ogunro E. A., Shillingford J. P. Natural history and evaluation of ST segment changes and MB CK release in acute myocardial infarction. Br Heart J. 1977 Sep;39(9):988–994. doi: 10.1136/hrt.39.9.988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Selwyn A. P., Ogunro E., Shillingford J. P. Loss of electrically active myocardium during anterior infarction in man. Br Heart J. 1977 Nov;39(11):1186–1191. doi: 10.1136/hrt.39.11.1186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sobel B. E., Bresnahan G. F., Shell W. E., Yoder R. D. Estimation of infarct size in man and its relation to prognosis. Circulation. 1972 Oct;46(4):640–648. doi: 10.1161/01.cir.46.4.640. [DOI] [PubMed] [Google Scholar]
  21. Yusuf S., Lopez R., Maddison A., Maw P., Ray N., McMillan S., Sleight P. Value of electrocardiogram in predicting and estimating infarct size in man. Br Heart J. 1979 Sep;42(3):286–293. doi: 10.1136/hrt.42.3.286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Zmyslinski R. W., Akiyama T., Biddle T. L., Shah P. M. Natural course of the S-T segment and QRS complex in patients with acute anterior myocardial infarction. Am J Cardiol. 1979 Jan;43(1):29–34. doi: 10.1016/0002-9149(79)90040-7. [DOI] [PubMed] [Google Scholar]

Articles from British Heart Journal are provided here courtesy of BMJ Publishing Group

RESOURCES