Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 Jan 15;89(2):708–712. doi: 10.1073/pnas.89.2.708

Linkage of atherogenic lipoprotein phenotype to the low density lipoprotein receptor locus on the short arm of chromosome 19.

P M Nishina 1, J P Johnson 1, J K Naggert 1, R M Krauss 1
PMCID: PMC48308  PMID: 1731344

Abstract

The atherogenic lipoprotein phenotype (ALP) is a common heritable trait characterized by a predominance of small, dense low density lipoprotein (LDL) particles (subclass pattern B), increased levels of triglyceride-rich lipoproteins, reductions in high density lipoprotein, and a 3-fold increased risk of myocardial infarction. Significant two-point linkage was found between ALP and the LDL receptor locus on the short arm of chromosome 19 in 51 relatives of nine probands with ALP pattern B. The maximum logarithm of odds (LOD) score of 4.07 was observed at a recombination fraction of 0.04, assuming 100% penetrance of ALP pattern B, and 4.27 at a recombination fraction of zero, assuming 90% penetrance of pattern B. Haplotyping data and multipoint linkage analysis suggest that the gene [named ATHS for atherosclerosis susceptibility (lipoprotein-associated)] responsible for ALP is located distal to D19S76 near or at the LDL receptor locus. This result suggests the possibility that genetic variation at the LDL receptor locus or a closely linked locus on chromosome 19 may be responsible for metabolic alterations in ALP pattern B that account for a substantial proportion of the familial predisposition to coronary artery disease in the general population.

Full text

PDF
708

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Austin M. A., Breslow J. L., Hennekens C. H., Buring J. E., Willett W. C., Krauss R. M. Low-density lipoprotein subclass patterns and risk of myocardial infarction. JAMA. 1988 Oct 7;260(13):1917–1921. [PubMed] [Google Scholar]
  2. Austin M. A., Brunzell J. D., Fitch W. L., Krauss R. M. Inheritance of low density lipoprotein subclass patterns in familial combined hyperlipidemia. Arteriosclerosis. 1990 Jul-Aug;10(4):520–530. doi: 10.1161/01.atv.10.4.520. [DOI] [PubMed] [Google Scholar]
  3. Austin M. A., King M. C., Vranizan K. M., Krauss R. M. Atherogenic lipoprotein phenotype. A proposed genetic marker for coronary heart disease risk. Circulation. 1990 Aug;82(2):495–506. doi: 10.1161/01.cir.82.2.495. [DOI] [PubMed] [Google Scholar]
  4. Austin M. A., King M. C., Vranizan K. M., Newman B., Krauss R. M. Inheritance of low-density lipoprotein subclass patterns: results of complex segregation analysis. Am J Hum Genet. 1988 Dec;43(6):838–846. [PMC free article] [PubMed] [Google Scholar]
  5. Austin M. A., Krauss R. M. Genetic control of low-density-lipoprotein subclasses. Lancet. 1986 Sep 13;2(8507):592–595. doi: 10.1016/s0140-6736(86)92425-6. [DOI] [PubMed] [Google Scholar]
  6. Griffin B. A., Caslake M. J., Yip B., Tait G. W., Packard C. J., Shepherd J. Rapid isolation of low density lipoprotein (LDL) subfractions from plasma by density gradient ultracentrifugation. Atherosclerosis. 1990 Jul;83(1):59–67. doi: 10.1016/0021-9150(90)90131-2. [DOI] [PubMed] [Google Scholar]
  7. Hanis C. L., Bertin T. K. Identification of an insulin receptor exon 8 NsiI polymorphism using the polymerase chain reaction. Nucleic Acids Res. 1990 Oct 11;18(19):5923–5923. doi: 10.1093/nar/18.19.5923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hobbs H. H., Russell D. W., Brown M. S., Goldstein J. L. The LDL receptor locus in familial hypercholesterolemia: mutational analysis of a membrane protein. Annu Rev Genet. 1990;24:133–170. doi: 10.1146/annurev.ge.24.120190.001025. [DOI] [PubMed] [Google Scholar]
  9. Keats B. J., Sherman S. L., Ott J. Report of the committee on linkage and gene order. Cytogenet Cell Genet. 1990;55(1-4):387–394. doi: 10.1159/000133023. [DOI] [PubMed] [Google Scholar]
  10. Krauss R. M., Burke D. J. Identification of multiple subclasses of plasma low density lipoproteins in normal humans. J Lipid Res. 1982 Jan;23(1):97–104. [PubMed] [Google Scholar]
  11. Kunkel L. M., Smith K. D., Boyer S. H., Borgaonkar D. S., Wachtel S. S., Miller O. J., Breg W. R., Jones H. W., Jr, Rary J. M. Analysis of human Y-chromosome-specific reiterated DNA in chromosome variants. Proc Natl Acad Sci U S A. 1977 Mar;74(3):1245–1249. doi: 10.1073/pnas.74.3.1245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. LaBelle M., Austin M. A., Rubin E., Krauss R. M. Linkage analysis of low-density lipoprotein subclass phenotypes and the apolipoprotein B gene. Genet Epidemiol. 1991;8(4):269–275. doi: 10.1002/gepi.1370080407. [DOI] [PubMed] [Google Scholar]
  13. Lathrop G. M., Lalouel J. M., Julier C., Ott J. Multilocus linkage analysis in humans: detection of linkage and estimation of recombination. Am J Hum Genet. 1985 May;37(3):482–498. [PMC free article] [PubMed] [Google Scholar]
  14. Leitersdorf E., Chakravarti A., Hobbs H. H. Polymorphic DNA haplotypes at the LDL receptor locus. Am J Hum Genet. 1989 Mar;44(3):409–421. [PMC free article] [PubMed] [Google Scholar]
  15. Leitersdorf E., Hobbs H. H. Human LDL receptor gene: HincII polymorphism detected by gene amplification. Nucleic Acids Res. 1988 Jul 25;16(14B):7215–7215. doi: 10.1093/nar/16.14.7215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nichols A. V., Krauss R. M., Musliner T. A. Nondenaturing polyacrylamide gradient gel electrophoresis. Methods Enzymol. 1986;128:417–431. doi: 10.1016/0076-6879(86)28084-2. [DOI] [PubMed] [Google Scholar]
  17. Russell D. W., Brown M. S., Goldstein J. L. Different combinations of cysteine-rich repeats mediate binding of low density lipoprotein receptor to two different proteins. J Biol Chem. 1989 Dec 25;264(36):21682–21688. [PubMed] [Google Scholar]
  18. Saiki R. K., Scharf S., Faloona F., Mullis K. B., Horn G. T., Erlich H. A., Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985 Dec 20;230(4732):1350–1354. doi: 10.1126/science.2999980. [DOI] [PubMed] [Google Scholar]
  19. Shaw D. J., Bell G. I. Rsa1 polymorphism at the insulin receptor locus (INSR) on chromosome 19. Nucleic Acids Res. 1985 Dec 9;13(23):8661–8661. doi: 10.1093/nar/13.23.8661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Shaw D. J., Meredith A. L., Sarfarazi M., Harley H. G., Huson S. M., Brook J. D., Bufton L., Litt M., Mohandas T., Harper P. S. Regional localisations and linkage relationships of seven RFLPs and myotonic dystrophy on chromosome 19. Hum Genet. 1986 Nov;74(3):262–266. doi: 10.1007/BF00282545. [DOI] [PubMed] [Google Scholar]
  21. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  22. Weber J. L., May P. E., Kappel C. Dinucleotide repeat polymorphism at the D19S49 locus. Nucleic Acids Res. 1990 Apr 11;18(7):1927–1927. doi: 10.1093/nar/18.7.1927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Zuliani G., Hobbs H. H. Dinucleotide repeat polymorphism at the 3' end of the LDL receptor gene. Nucleic Acids Res. 1990 Jul 25;18(14):4300–4300. doi: 10.1093/nar/18.14.4300. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES