Skip to main content
Data in Brief logoLink to Data in Brief
. 2016 Mar 26;7:1131–1138. doi: 10.1016/j.dib.2016.03.063

Data of NODDI diffusion metrics in the brain and computer simulation of hybrid diffusion imaging (HYDI) acquisition scheme

Chandana Kodiweera a, Yu-Chien Wu b,
PMCID: PMC4833129  PMID: 27115027

Abstract

This article provides NODDI diffusion metrics in the brains of 52 healthy participants and computer simulation data to support compatibility of hybrid diffusion imaging (HYDI), “Hybrid diffusion imaging”[1] acquisition scheme in fitting neurite orientation dispersion and density imaging (NODDI) model, “NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain”[2]. HYDI is an extremely versatile diffusion magnetic resonance imaging (dMRI) technique that enables various analyzes methods using a single diffusion dataset. One of the diffusion data analysis methods is the NODDI computation, which models the brain tissue with three compartments: fast isotropic diffusion (e.g., cerebrospinal fluid), anisotropic hindered diffusion (e.g., extracellular space), and anisotropic restricted diffusion (e.g., intracellular space). The NODDI model produces microstructural metrics in the developing brain, aging brain or human brain with neurologic disorders. The first dataset provided here are the means and standard deviations of NODDI metrics in 48 white matter region-of-interest (ROI) averaging across 52 healthy participants. The second dataset provided here is the computer simulation with initial conditions guided by the first dataset as inputs and gold standard for model fitting. The computer simulation data provide a direct comparison of NODDI indices computed from the HYDI acquisition [1] to the NODDI indices computed from the originally proposed acquisition [2]. These data are related to the accompanying research article “Age Effects and Sex Differences in Human Brain White Matter of Young to Middle-Aged Adults: A DTI, NODDI, and q-Space Study[3].

Keywords: NODDI, HYDI, Diffusion, Magnetic Resonance Imaging, White matter


Specifications Table

Subject area Neuroimaging
More specific subject area Diffusion magnetic resonance imaging
Type of data Figure, table
How data was acquired Hybrid diffusion imaging (HYDI) at 3 T MRI scanner and computer simulation
Data format Analyzed
Experimental factors 48 white matter ROIs in the human brain and synthetic diffusion signals
Experimental features Diffusion microstructural metrics
Data source location University of Wisconsin - Madison
Data accessibility Data is with this article

Value of the data

  • The experimental data could serve as bench marker for studies on white matter microstructural measurements using either imaging or histologic approaches.

  • This simulation data could serve as a reference for future studies that use HYDI acquisition for NODDI computation.

  • This simulation approach could be applied on future studies to design acquisition schemes and investigate the schemes’ compatibility for diffusion compartment modeling.

1. Data

The experimental data (Table 1) include NODDI metrics (i.e., orientation dispersion index (ODI) and intercellular volume fraction (ICVF)) and other diffusion metrics for comparison such as DTI (i.e., axial diffusivity (AD), radial diffusivity (RD), mean diffusivity (MD), and factional anisotropy (FA)) and q-space analysis (i.e., zero-displacement probability (P0)). The means and standard deviations of diffusion metrics in 48 white matter ROIs were computed across 52 healthy participants with age between 18 and 72 years old (mean 39±14).

Table 1.

Mean and standard deviation (std) of the diffusion metrics in 48 white matter ROIs [4] across 52 subjects.

Da (10−6mm2/s)
Dr (10−6mm2/s)
MD (10−6mm2/s)
FA
Po
ODI
ICVF
FISO
ROI Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std
ACR-L 840 40 392 4 541 36 0.470 0.033 0.463 0.042 0.292 0.023 0.655 0.057 0.149 0.033
ACR-R 848 37 395 4 546 34 0.467 0.035 0.457 0.039 0.285 0.024 0.656 0.055 0.160 0.029
ALIC-L 858 45 316 3 497 29 0.556 0.038 0.473 0.038 0.266 0.031 0.676 0.050 0.111 0.022
ALIC-R 876 51 322 3 506 32 0.556 0.037 0.461 0.038 0.260 0.026 0.682 0.053 0.124 0.025
BCC 1184 64 380 8 648 70 0.628 0.054 0.510 0.056 0.141 0.016 0.712 0.038 0.230 0.047
CGC-L 872 41 348 2 522 23 0.521 0.028 0.468 0.036 0.242 0.026 0.608 0.046 0.090 0.027
CGC-R 844 39 369 2 527 21 0.485 0.032 0.443 0.035 0.265 0.030 0.581 0.048 0.085 0.026
CGH-L 855 54 469 5 598 45 0.388 0.031 0.322 0.026 0.344 0.027 0.502 0.045 0.112 0.050
CGH-R 852 44 442 3 579 32 0.412 0.031 0.338 0.026 0.337 0.025 0.507 0.043 0.094 0.041
CP-L 1007 57 269 3 515 38 0.682 0.038 0.621 0.073 0.190 0.017 0.768 0.041 0.148 0.027
CP-R 1049 63 293 5 545 48 0.671 0.043 0.590 0.067 0.187 0.017 0.775 0.042 0.171 0.031
CST-L 883 83 332 7 516 72 0.584 0.042 0.686 0.134 0.208 0.019 0.769 0.053 0.181 0.049
CST-R 887 85 333 7 517 68 0.587 0.040 0.685 0.144 0.208 0.023 0.772 0.053 0.184 0.047
EC-L 835 45 399 5 544 44 0.455 0.034 0.379 0.033 0.320 0.026 0.531 0.037 0.075 0.037
EC-R 844 39 410 4 555 35 0.444 0.031 0.364 0.028 0.317 0.021 0.528 0.034 0.087 0.032
Fx 1716 141 830 16 1126 153 0.477 0.055 0.231 0.050 0.168 0.033 0.770 0.077 0.622 0.091
Fx-ST-L 1025 73 448 7 641 71 0.510 0.040 0.386 0.057 0.236 0.020 0.593 0.045 0.214 0.065
Fx-ST-R 1092 73 500 7 697 68 0.486 0.038 0.347 0.051 0.244 0.024 0.579 0.042 0.262 0.063
GCC 1325 93 530 8 795 83 0.575 0.033 0.411 0.045 0.180 0.018 0.722 0.047 0.336 0.054
ICP-L 817 46 340 3 499 27 0.526 0.038 0.569 0.032 0.248 0.028 0.683 0.038 0.125 0.039
ICP-R 810 46 322 3 484 27 0.539 0.039 0.590 0.037 0.247 0.030 0.683 0.038 0.105 0.032
MCP 921 90 362 6 549 66 0.569 0.045 0.662 0.107 0.220 0.028 0.809 0.050 0.204 0.045
ML-L 884 64 288 3 487 22 0.615 0.048 0.575 0.035 0.180 0.024 0.642 0.029 0.097 0.028
ML-R 900 75 287 2 491 24 0.625 0.047 0.571 0.031 0.175 0.023 0.638 0.031 0.096 0.031
PCR-L 863 79 397 6 552 65 0.494 0.032 0.530 0.049 0.224 0.016 0.628 0.053 0.117 0.046
PCR-R 847 55 378 4 534 44 0.503 0.029 0.528 0.044 0.230 0.017 0.616 0.048 0.101 0.033
PCT 767 44 328 3 474 25 0.514 0.036 0.598 0.032 0.254 0.026 0.713 0.043 0.102 0.034
PLIC-L 860 32 259 2 460 22 0.643 0.027 0.646 0.032 0.209 0.018 0.743 0.036 0.105 0.020
PLIC-R 875 35 264 2 468 23 0.640 0.027 0.629 0.027 0.205 0.016 0.736 0.033 0.111 0.021
PTR-L 1072 99 418 9 636 89 0.580 0.038 0.488 0.051 0.161 0.022 0.634 0.053 0.191 0.064
PTR-R 962 64 332 5 542 48 0.608 0.036 0.548 0.063 0.180 0.022 0.656 0.057 0.132 0.035
RLIC-L 904 54 318 4 513 37 0.600 0.031 0.556 0.040 0.199 0.021 0.686 0.038 0.129 0.032
RLIC-R 905 44 328 3 520 29 0.588 0.030 0.540 0.037 0.211 0.019 0.681 0.040 0.135 0.031
SCC 1102 42 236 3 525 30 0.749 0.027 0.666 0.042 0.122 0.013 0.764 0.038 0.125 0.027
SCP-L 1316 106 534 8 795 82 0.579 0.033 0.454 0.036 0.154 0.026 0.724 0.041 0.329 0.057
SCP-R 1243 91 457 5 719 58 0.607 0.031 0.490 0.029 0.145 0.024 0.718 0.039 0.295 0.048
SCR-L 760 35 337 3 478 30 0.501 0.030 0.595 0.039 0.268 0.016 0.689 0.044 0.103 0.024
SCR-R 760 29 344 2 483 22 0.488 0.025 0.586 0.033 0.273 0.018 0.692 0.041 0.114 0.026
SFO-L 812 73 361 6 511 64 0.500 0.038 0.499 0.057 0.286 0.029 0.661 0.061 0.117 0.047
SFO-R 810 49 361 4 510 35 0.491 0.037 0.483 0.045 0.282 0.032 0.645 0.069 0.112 0.038
SLF-L 745 30 332 2 470 23 0.494 0.025 0.605 0.036 0.269 0.018 0.699 0.040 0.096 0.021
SLF-R 763 29 344 2 484 20 0.489 0.023 0.571 0.035 0.275 0.020 0.693 0.042 0.107 0.025
SS-L 967 73 419 5 602 52 0.511 0.029 0.427 0.037 0.225 0.026 0.594 0.041 0.172 0.047
SS-R 951 57 387 3 575 36 0.536 0.028 0.447 0.039 0.237 0.028 0.635 0.049 0.167 0.032
TAP-L 2053 266 1328 25 1569 251 0.329 0.048 0.157 0.055 0.179 0.042 0.819 0.079 0.758 0.118
TAP-R 1788 190 1026 17 1280 176 0.414 0.054 0.230 0.064 0.143 0.028 0.759 0.089 0.624 0.123
UNC-L 864 66 438 6 580 56 0.419 0.048 0.329 0.037 0.306 0.052 0.455 0.033 0.061 0.047
UNC-R 926 76 464 8 618 72 0.425 0.055 0.303 0.045 0.296 0.053 0.474 0.054 0.116 0.103

The HYDI acquisition scheme includes 5 shells with different diffusion-weighting b-value and each shell has homogeneously distributed diffusion-weighting directions [1]. Details of the HYDI diffusion-encoding scheme are shown in Table 2. We simulated different combinations of HYDI shells to compute NODDI diffusion indices. The HYDI shell combination protocols are: p12, p123, p1234, and p12345 (Table 3). The p12 protocol comprises the first and second HYDI shell with b-value of 375 and 1500 s/mm2, respectively. The p123 protocol comprises the 1st, 2nd and 3rd HYDI shell. Similarly, p1234 comprises the 1st to 4th HYDI shell and p12345 has all 5 shells. The NODDI-p14 is the diffusion-encoding scheme recommended by [2]. The NODDI diffusion model yields microstructural indices including the intracellular volume fraction (ICVF), fiber orientation dispersion index (ODI), and free water volume fraction (FISO). The estimates of these microstructural indices will be compared between the HYDI protocols and the NODDI-p14.

Table 2.

HYDI shells, number of diffusion encoding directions (Ne), and the corrosponding b-values.

HYDI shell Ne b-value (s/mm2)
1 0
1st 6 375
2nd 21 1500
3rd 24 3375
4th 24 6000
5th 50 9375
total 126

Table 3.

Diffusion encoding protocols

Protocol b-value(s/mm2), (number of diffusion directions)
NODDI-p14 b=711(30), b=2855(60)
p12 b=375(6), b=1500(21)
p123 b=375(6), b=1500(21), b=3375(24)
p1234 b=375(6), b=1500(21), b=3375(24), b=6000(24)
p12345 b=375(6), b=1500(21), b=3375(24), b=6000(24), b=9375(50)

2. Experimental design, materials, and methods

The 48 white matter ROIs of the experimental data in Table 1 were defined through intersecting the white matter atlas, Johns Hopkins University (JHU) ICBM-DTI-81 [4] with the common white matter skeleton created from all of the subjects similar to [3]. The diffusion metrics of NODDI, DTI, and q-space were averaged within the ROIs and then across the 52 participants. The standard deviations reflect the variations of ROI means across the participants.

The tissue diffusion properties were simulated using SynthMeas.m provided in the NODDI Matlab toolbox (http://mig.cs.ucl.ac.uk/index.php?n=Tutorial.NODDImatlab). According to the experimental data in Table 1, we designed the ground truth and initial inputs for computer simulation: ICVF = [0.2, 0.4, 0.5, 0.8]; kappa = [0, 0.25, 1, 4, 16]; and FISO=0. Similar design can also be found in [2]. The kappa is the Watson distribution parameter that determines the estimation of ODI [5]. The intracellular axial diffusivity is set as 1.7×10−3 mm2/s, and the fast free isotropic diffusivity representing cerebrospinal fluid is set as 3×10−3 mm2/s similar to free water diffusion. There were 30 random trials at each of the 250 different fiber orientations uniformly distributed on a unit sphere (Fig. 1). Five signal-to-noise ratios (SNR) defined at b-value =0 s/mm2 was simulated: SNRb0=[20, 30, 40, 50, Infinity]. The 4 b0 SNRs yield corresponding SNRs across the 50 diffusion directions in the outermost shell, SNRb=9375=[2.22±0.48, 3.71±0.81, 4.45±0.97, 5.56±1.21], respectively. Therefore, SNRb0=20 yields the outermost-shell SNRb=9375 (2.22±0.48) that is closest to the reported measurement (i.e., 2.85±0.71) in the human brain published in [1].

Fig. 1.

Fig. 1.

The vertices represent the fiber orientations on the unit spherical surface. There are 250 uniformly distributed vertices in this figure.

The simulation results are shown in Fig. 2, Fig. 3, Fig. 4, Fig. 5, Fig. 6. For all of the ICVF and kappa conditions, the NODDI-p14 and HYDI p12345 schemes did not differ significantly from each other (p-value > 0.05). At SNRb0=20, HYDI p12345 overestimates low ICVFs more often than NODDI-p14, but both are comparable at a high ICVF (>0.5), which is a more realistic value for white matter listed in Table 1. Both schemes underestimate high ODIs, but work fine at a low ODI (<=0.5), which is again more realistic for white matter listed in Table 1. As the SNR increases, both NODDI-p14 and HYDI eventually reach the ground truth. Between the combinations of HYDI shells, p12 tends to underestimate ODI in high ODI tissue model at low SNR and also overestimate ICVF in high ICVF. Other combinations p123, p1234, and p12345 were comparable across simulated tissue properties and SNRs.

Fig. 2.

Fig. 2.

Simulated results for SNR=20. Dashed lines denote the ground truth of simulated diffusion properties (i.e., ICVF, ODI and FISO). The dot denotes the mean of the specific diffusion property estimated using NODDI-p14 and HYDI (p12, p123, p1234, and p12345) schemes. The error bar denotes the standard deviation across the 30 random trials, 250 fiber directions and the rest diffusion properties.

Fig. 3.

Fig. 3.

Simulated results for SNR=30. Dashed lines denote the ground truth of simulated diffusion properties (i.e., ICVF, ODI and FISO). The dot denotes the mean of the specific diffusion property estimated using NODDI-p14 and HYDI (p12, p123, p1234, and p12345) schemes. The error bar denotes the standard deviation across the 30 random trials, 250 fiber directions and the rest diffusion properties.

Fig. 4.

Fig. 4.

Simulated results for SNR=40. Dashed lines denote the ground truth of simulated diffusion properties (i.e., ICVF, ODI and FISO). The dot denotes the mean of the specific diffusion property estimated using NODDI-p14 and HYDI (p12, p123, p1234, and p12345) schemes. The error bar denotes the standard deviation across the 30 random trials, 250 fiber directions and the rest diffusion properties.

Fig. 5.

Fig. 5.

Simulated results for SNR=50. Dashed lines denote the ground truth of simulated diffusion properties (i.e., ICVF, ODI and FISO). The dot denotes the mean of the specific diffusion property estimated using NODDI-p14 and HYDI (p12, p123, p1234, and p12345) schemes. The error bar denotes the standard deviation across the 30 random trials, 250 fiber directions and the rest diffusion properties.

Fig. 6.

Fig. 6.

Simulated results for SNR = infinity (i.e., noise=0). Dashed lines denote the ground truth of simulated diffusion properties (i.e., ICVF, ODI and FISO). The dot denotes the mean of the specific diffusion property estimated using NODDI-p14 and HYDI (p12, p123, p1234, and p12345) schemes. The error bar denotes the standard deviation across the 30 random trials, 250 fiber directions and the rest diffusion properties.

Acknowledgments

The authors would like to thank Dr. Hui (Gary) Zhang for helpful discussions. This work was funded in part by NIH R21 NS075791.

Footnotes

Appendix A

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2016.03.063.

Appendix A. Supplementary material

Supplementary material

mmc1.pdf (1.2MB, pdf)

References

  • 1.Wu Y.C., Alexander A.L. Hybrid diffusion imaging. Neuroimage. 2007;36(3):617–629. doi: 10.1016/j.neuroimage.2007.02.050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Zhang H. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage. 2012;61(4):1000–1016. doi: 10.1016/j.neuroimage.2012.03.072. [DOI] [PubMed] [Google Scholar]
  • 3.Kodiweera C. Age effects and sex differences in human brain white matter of young to middle-aged adults: a DTI, NODDI, and q-space study. NeuroImage. 2016;128:180–192. doi: 10.1016/j.neuroimage.2015.12.033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Oishi K., Zilles K., Amunts K., Faria A., Jiang H., Li X., Akhter K., Hua K., Woods R., Toga A.W., Pike G.B., Rosa-Neto P., Evans A., Zhang J., Huang H., Miller M.I., vanZijl P.C., Mazziotta J., Moris S. Human brain white matter atlas: identification and assignment of common anatomical structures in superficial white matter. Neuroimage. 2008;43(3):447–457. doi: 10.1016/j.neuroimage.2008.07.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Mardia K.V., Jupp P.E. xxi. J. Wiley; Chichester; New York: 2000. Directional statistics; p. 429. (Wiley series in probability and statistics). [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary material

mmc1.pdf (1.2MB, pdf)

Articles from Data in Brief are provided here courtesy of Elsevier

RESOURCES