Abstract
The importance of the 2'-hydroxyl group of several guanosine residues for the catalytic efficiency of a hammerhead ribozyme has been investigated. Five ribozymes in which single guanosine residues were substituted with 2'-amino-, 2'-fluoro-, or 2'-deoxyguanosine were chemically synthesized. The comparison of the catalytic activity of the three 2' modifications at a specific position allows conclusions about the functional role of the parent 2'-hydroxyl group. Substitutions of nonconserved nucleotides within the ribozyme caused little alteration in the catalytic activity relative to that obtained with the unmodified ribozyme. In contrast, when either of the guanosines within the single-stranded loop between stem I and stem II of the ribozyme was replaced by 2'-deoxyguanosine or 2'-fluoro-2'-deoxyguanosine, the catalytic activities of the resulting ribozymes were reduced by factors of at least 150. The catalytic activities of the corresponding ribozymes containing 2'-amino-2'-deoxyguanosine substitutions at these positions, however, were both reduced by factors of 15. These effects resulted from decreases in the respective kcat values, whereas variations in the Km values were comparatively small. A different pattern of reactivity of the three 2' modifications was observed at the guanosine immediately 3' to stem II of the ribozyme. Whereas both 2'-deoxyguanosine and 2'-amino-2'-deoxyguanosine at this position showed catalytic activity similar to that of the unmodified ribozyme, the activity of the corresponding 2'-fluoro-2'-deoxyguanosine-containing ribozyme was reduced by a factor of 15. The implications of these substitution-specific reactivities on the functional role of the native 2'-hydroxyl groups are discussed.
Full text
PDF



Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beijer B., Sulston I., Sproat B. S., Rider P., Lamond A. I., Neuner P. Synthesis and applications of oligoribonucleotides with selected 2'-O-methylation using the 2'-O-[1-(2-fluorophenyl)-4-methoxypiperidin-4-yl] protecting group. Nucleic Acids Res. 1990 Sep 11;18(17):5143–5151. doi: 10.1093/nar/18.17.5143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fedor M. J., Uhlenbeck O. C. Substrate sequence effects on "hammerhead" RNA catalytic efficiency. Proc Natl Acad Sci U S A. 1990 Mar;87(5):1668–1672. doi: 10.1073/pnas.87.5.1668. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guschlbauer W., Jankowski K. Nucleoside conformation is determined by the electronegativity of the sugar substituent. Nucleic Acids Res. 1980 Mar 25;8(6):1421–1433. doi: 10.1093/nar/8.6.1421. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haseloff J., Gerlach W. L. Simple RNA enzymes with new and highly specific endoribonuclease activities. Nature. 1988 Aug 18;334(6183):585–591. doi: 10.1038/334585a0. [DOI] [PubMed] [Google Scholar]
- Hobbs J., Sternbach H., Sprinzl M., Eckstein F. Polynucleotides containing 2'-amino-2'-deoxyribose and 2'-azido-2'-deoxyribose. Biochemistry. 1973 Dec 4;12(25):5138–5145. doi: 10.1021/bi00749a018. [DOI] [PubMed] [Google Scholar]
- Olsen D. B., Benseler F., Aurup H., Pieken W. A., Eckstein F. Study of a hammerhead ribozyme containing 2'-modified adenosine residues. Biochemistry. 1991 Oct 8;30(40):9735–9741. doi: 10.1021/bi00104a024. [DOI] [PubMed] [Google Scholar]
- Perreault J. P., Labuda D., Usman N., Yang J. H., Cedergren R. Relationship between 2'-hydroxyls and magnesium binding in the hammerhead RNA domain: a model for ribozyme catalysis. Biochemistry. 1991 Apr 23;30(16):4020–4025. doi: 10.1021/bi00230a029. [DOI] [PubMed] [Google Scholar]
- Perreault J. P., Wu T. F., Cousineau B., Ogilvie K. K., Cedergren R. Mixed deoxyribo- and ribo-oligonucleotides with catalytic activity. Nature. 1990 Apr 5;344(6266):565–567. doi: 10.1038/344565a0. [DOI] [PubMed] [Google Scholar]
- Pieken W. A., Olsen D. B., Benseler F., Aurup H., Eckstein F. Kinetic characterization of ribonuclease-resistant 2'-modified hammerhead ribozymes. Science. 1991 Jul 19;253(5017):314–317. doi: 10.1126/science.1857967. [DOI] [PubMed] [Google Scholar]
- Ruffner D. E., Stormo G. D., Uhlenbeck O. C. Sequence requirements of the hammerhead RNA self-cleavage reaction. Biochemistry. 1990 Nov 27;29(47):10695–10702. doi: 10.1021/bi00499a018. [DOI] [PubMed] [Google Scholar]
- Slim G., Gait M. J. Configurationally defined phosphorothioate-containing oligoribonucleotides in the study of the mechanism of cleavage of hammerhead ribozymes. Nucleic Acids Res. 1991 Mar 25;19(6):1183–1188. doi: 10.1093/nar/19.6.1183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Symons R. H. Self-cleavage of RNA in the replication of small pathogens of plants and animals. Trends Biochem Sci. 1989 Nov;14(11):445–450. doi: 10.1016/0968-0004(89)90103-5. [DOI] [PubMed] [Google Scholar]
- Uhlenbeck O. C. A small catalytic oligoribonucleotide. Nature. 1987 Aug 13;328(6131):596–600. doi: 10.1038/328596a0. [DOI] [PubMed] [Google Scholar]
- Verheyden J. P., Wagner D., Moffatt J. G. Synthesis of some pyrimidine 2'-amino-2'-deoxynucleosides. J Org Chem. 1971 Jan 29;36(2):250–254. doi: 10.1021/jo00801a002. [DOI] [PubMed] [Google Scholar]
- Williams D. M., Benseler F., Eckstein F. Properties of 2'-fluorothymidine-containing oligonucleotides: interaction with restriction endonuclease EcoRV. Biochemistry. 1991 Apr 23;30(16):4001–4009. doi: 10.1021/bi00230a027. [DOI] [PubMed] [Google Scholar]
- van Tol H., Buzayan J. M., Feldstein P. A., Eckstein F., Bruening G. Two autolytic processing reactions of a satellite RNA proceed with inversion of configuration. Nucleic Acids Res. 1990 Apr 25;18(8):1971–1975. doi: 10.1093/nar/18.8.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]