Skip to main content
British Heart Journal logoLink to British Heart Journal
. 1994 Jan;71(1):7–15. doi: 10.1136/hrt.71.1.7

Failure of epoprostenol (prostacyclin, PGI2) to inhibit platelet aggregation and to prevent restenosis after coronary angioplasty: results of a randomised placebo controlled trial.

A H Gershlick 1, D Spriggins 1, S W Davies 1, Y D Syndercombe Court 1, J Timmins 1, A D Timmis 1, M T Rothman 1, C Layton 1, R Balcon 1
PMCID: PMC483601  PMID: 8297699

Abstract

OBJECTIVE--To study the effect of epoprostenol (prostacyclin, PGI2) given before, during, and for 36 h after coronary angioplasty on restenosis at six months and to evaluate the transcardiac gradient of platelet aggregation before and after percutaneous transluminal coronary angioplasty (PTCA) in treated and placebo groups. DESIGN--Double blind placebo controlled randomised study. PATIENTS--135 patients with successful coronary angioplasty. METHODS--Intravenous infusion of PGI2 (4 ng/kg/ml) or buffer was started before balloon angioplasty and continued for 36 hours. Platelet aggregation was measured in blood from the aorta and coronary sinus before and after PTCA in each group. Routine follow up was at six months with repeat angiography and there was quantitative assessment of all angiograms (those undertaken within the follow up period and at routine follow up). PRESENTATION OF RESULTS--Restenosis rates in treated and placebo groups determined according to the National Heart, Lung and Blood Institute definition IV. Comparison at follow up between the effect of treatment on mean absolute luminal diameter and mean absolute follow up diameter in the placebo group. Comparison of acute gain and late loss between groups. RESULTS--Of 125 patients available for assessment 23 were re-admitted because of angina within the follow up period. Quantitative angiography showed restenosis in 15 (10 in the PGI2 group and five in the placebo group). Of 105 patients evaluated at six month angiography there was restenosis in nine more in the PGI2 group and 18 more in the placebo group. Total restenosis rates (for patients) were 29.2% for PGI2 and 38.3% for placebo (NS). The mean absolute gain in luminal diameter was 1.84 (0.76) mm in the PGI2 group and 1.58 (0.56) mm in the placebo group (p = 0.04); the late loss in the PGI2 group was also greater (0.65 (0.94) mm vs 0.62 (0.89) mm (NS) and there was no significant difference in final luminal diameter at follow up between the two groups (1.83 (0.88) mm v 1.59 (0.60) mm). The transcardiac gradient of quantitative platelet aggregation increased after PTCA in both groups, indicating that PGI2 in this dose did not affect angioplasty-induced platelet activation. Mean (SD) platelet activation indices in the PGI2 group were pre PTCA aorta 8.4 (4.1) v coronary sinus 8.8 (4.0) (p = 0.001) and post PTCA aorta 8.9(3.0) v coronary sinus 12.9 (5.7) (p = 0.001). In the placebo group the values were pre PTCA aorta 7.6 (3.3) v coronary sinus 7.4 (3.6) (p = 0.001) and post PTCA aorta 7.6(2.8) v coronary sinus 11.2(4.3) (p = 0.001). CONCLUSION--The dose of PGI2 given was designed to limit side effects and as a short-term infusion did not significantly decrease the six month restenosis rate after PTCA. The sample size, which was determined by the original protocol and chosen because of the potency of the agent being tested, would have detected only a 50% reduction in restenosis rate. There was, however, no effect in the treated patients on the increased platelet aggregation seen in placebo group as a result of angioplasty. Angioplasty is a powerful stimulus to blood factor activation. Powerful agents that prevent local platelet adhesion and aggregation are likely to be required to reduce restenosis.

Full text

PDF
7

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarez L. G., Jackson S. A., Berry J. A., Eichhorn E. J. Evaluation of a personal computer-based quantitative coronary analysis system for rapid assessment of coronary stenoses. Am Heart J. 1992 Jun;123(6):1500–1510. doi: 10.1016/0002-8703(92)90801-2. [DOI] [PubMed] [Google Scholar]
  2. Antoniades H. N., Scher C. D., Stiles C. D. Purification of human platelet-derived growth factor. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1809–1813. doi: 10.1073/pnas.76.4.1809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Austin G. E., Ratliff N. B., Hollman J., Tabei S., Phillips D. F. Intimal proliferation of smooth muscle cells as an explanation for recurrent coronary artery stenosis after percutaneous transluminal coronary angioplasty. J Am Coll Cardiol. 1985 Aug;6(2):369–375. doi: 10.1016/s0735-1097(85)80174-1. [DOI] [PubMed] [Google Scholar]
  4. Bayer B. L., Blass K. E., Förster W. Anti-aggregatory effect of prostacyclin (PGI2) in vivo. Br J Pharmacol. 1979 May;66(1):10–12. doi: 10.1111/j.1476-5381.1979.tb16090.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Block P. C., Myler R. K., Stertzer S., Fallon J. T. Morphology after transluminal angioplasty in human beings. N Engl J Med. 1981 Aug 13;305(7):382–385. doi: 10.1056/NEJM198108133050706. [DOI] [PubMed] [Google Scholar]
  6. Ellis S. G., Muller D. W. Arterial injury and the enigma of coronary restenosis. J Am Coll Cardiol. 1992 Feb;19(2):275–277. doi: 10.1016/0735-1097(92)90477-5. [DOI] [PubMed] [Google Scholar]
  7. Friedman R. J., Stemerman M. B., Wenz B., Moore S., Gauldie J., Gent M., Tiell M. L., Spaet H. The effect of thrombocytopenia on experimental arteriosclerotic lesion formation in rabbits. Smooth muscle cell proliferation and re-endothelialization. J Clin Invest. 1977 Nov;60(5):1191–1201. doi: 10.1172/JCI108872. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gershlick A. H., Syndercombe Court Y. D., Murday A. J., Lewis T., Mills P. G. Platelet function is altered by autogenous vein grafts in the early postoperative months. Cardiovasc Res. 1984 Feb;18(2):119–125. doi: 10.1093/cvr/18.2.119. [DOI] [PubMed] [Google Scholar]
  9. Gershlick A., Brack M. J., More R. S., Syndercombe-Court D., Balcon R. Angiographic restenosis after angioplasty: comparison of definitions and correlation with clinical outcome. Coron Artery Dis. 1993 Jan;4(1):73–81. [PubMed] [Google Scholar]
  10. Groves H. M., Kinlough-Rathbone R. L., Richardson M., Moore S., Mustard J. F. Platelet interaction with damaged rabbit aorta. Lab Invest. 1979 Feb;40(2):194–200. [PubMed] [Google Scholar]
  11. Higgs E. A., Moncada S., Vane J. R., Caen J. P., Michel H., Tobelem G. Effect of prostacyclin (PGI2) on platelet adhesion to rabbit arterial subendothelium. Prostaglandins. 1978 Jul;16(1):17–22. doi: 10.1016/0090-6980(78)90197-1. [DOI] [PubMed] [Google Scholar]
  12. Kaplan K. L., Broekman M. J., Chernoff A., Lesznik G. R., Drillings M. Platelet alpha-granule proteins: studies on release and subcellular localization. Blood. 1979 Apr;53(4):604–618. [PubMed] [Google Scholar]
  13. Knudtson M. L., Flintoft V. F., Roth D. L., Hansen J. L., Duff H. J. Effect of short-term prostacyclin administration on restenosis after percutaneous transluminal coronary angioplasty. J Am Coll Cardiol. 1990 Mar 1;15(3):691–697. doi: 10.1016/0735-1097(90)90648-9. [DOI] [PubMed] [Google Scholar]
  14. Mizuno K., Kurita A., Imazeki N. Pathological findings after percutaneous transluminal coronary angioplasty. Br Heart J. 1984 Nov;52(5):588–590. doi: 10.1136/hrt.52.5.588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Moncada S., Whittle B. J. Biological actions of prostacyclin and its pharmacological use in platelet studies. Adv Exp Med Biol. 1985;192:337–358. doi: 10.1007/978-1-4615-9442-0_24. [DOI] [PubMed] [Google Scholar]
  16. Nickoloff E. L., Han J., Esser P. D., Nichols A. B. Evaluation of a cinevideodensitometric method for measuring vessel dimensions from digitized angiograms. Invest Radiol. 1987 Nov;22(11):875–882. doi: 10.1097/00004424-198711000-00007. [DOI] [PubMed] [Google Scholar]
  17. Pickles H., O'Grady J. Side effects occurring during administration of epoprostenol (prostacyclin, PGI2), in man. Br J Clin Pharmacol. 1982 Aug;14(2):177–185. doi: 10.1111/j.1365-2125.1982.tb01959.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rensing B. J., Hermans W. R., Deckers J. W., de Feyter P. J., Tijssen J. G., Serruys P. W. Lumen narrowing after percutaneous transluminal coronary balloon angioplasty follows a near gaussian distribution: a quantitative angiographic study in 1,445 successfully dilated lesions. J Am Coll Cardiol. 1992 Apr;19(5):939–945. doi: 10.1016/0735-1097(92)90274-q. [DOI] [PubMed] [Google Scholar]
  19. Ross R., Raines E. W., Bowen-Pope D. F. The biology of platelet-derived growth factor. Cell. 1986 Jul 18;46(2):155–169. doi: 10.1016/0092-8674(86)90733-6. [DOI] [PubMed] [Google Scholar]
  20. Schwartz L., Bourassa M. G., Lespérance J., Aldridge H. E., Kazim F., Salvatori V. A., Henderson M., Bonan R., David P. R. Aspirin and dipyridamole in the prevention of restenosis after percutaneous transluminal coronary angioplasty. N Engl J Med. 1988 Jun 30;318(26):1714–1719. doi: 10.1056/NEJM198806303182603. [DOI] [PubMed] [Google Scholar]
  21. Silver K. H., Buczek J. A., Esser P. D., Nichols A. B. Quantitative analysis of coronary arteriograms by microprocessor cinevideodensitometry. Cathet Cardiovasc Diagn. 1987 Sep-Oct;13(5):291–300. doi: 10.1002/ccd.1810130502. [DOI] [PubMed] [Google Scholar]
  22. Stine R. A., Magorien R. D., Bush C. A., Kolibash A. J., Leier C. V., Fertel R. H., Brandt J., Unverferth D. V. Failure of percutaneous transluminal coronary angioplasty to stimulate platelet and prostaglandin activity. Cathet Cardiovasc Diagn. 1985;11(3):247–254. doi: 10.1002/ccd.1810110304. [DOI] [PubMed] [Google Scholar]
  23. Szczeklik A., Gryglewski R. J., Nizankowski R., Musiał J., Pietoń R., Mruk J. Circulatory and anti-platelet effects of intravenous prostacyclin in healthy men. Pharmacol Res Commun. 1978 Jun;10(6):545–556. doi: 10.1016/s0031-6989(78)80053-8. [DOI] [PubMed] [Google Scholar]
  24. Tateson J. E., Moncada S., Vane J. R. Effects of prostacyclin (PGX) on cyclic AMP concentrations in human platelets. Prostaglandins. 1977 Mar;13(3):389–397. doi: 10.1016/0090-6980(77)90019-3. [DOI] [PubMed] [Google Scholar]
  25. Tschopp T. B. Aspirin inhibits platelet aggregation on, but not adhesion to, collagen fibrils: an assessment of platelet adhesion and deposited platelet mass by morphometry and 51Cr-labeling. Thromb Res. 1977 Nov;11(5):619–632. doi: 10.1016/0049-3848(77)90020-2. [DOI] [PubMed] [Google Scholar]
  26. Umans V. A., Beatt K. J., Rensing B. J., Hermans W. R., de Feyter P. J., Serruys P. W. Comparative quantitative angiographic analysis of directional coronary atherectomy and balloon coronary angioplasty. Am J Cardiol. 1991 Dec 15;68(17):1556–1563. doi: 10.1016/0002-9149(91)90309-9. [DOI] [PubMed] [Google Scholar]
  27. Weiss H. J., Turitto V. T. Prostacyclin (prostaglandin I2, PGI2) inhibits platelet adhesion and thrombus formation on subendothelium. Blood. 1979 Feb;53(2):244–250. [PubMed] [Google Scholar]
  28. Witte L. D., Kaplan K. L., Nossel H. L., Lages B. A., Weiss H. J., Goodman D. S. Studies of the release from human platelets of the growth factor for cultured human arterial smooth muscle cells. Circ Res. 1978 Mar;42(3):402–409. doi: 10.1161/01.res.42.3.402. [DOI] [PubMed] [Google Scholar]

Articles from British Heart Journal are provided here courtesy of BMJ Publishing Group

RESOURCES