Abstract
OBJECTIVE--To study the short-term effects of inhaled nitric oxide in infants and young children with congenital heart disease. SETTING--A supraregional referral centre for children with congenital heart disease. PATIENTS AND METHODS--22 infants and children aged 3-32 months (median age 5 months) with congenital heart disease undergoing preoperative cardiac catheterisation. All but one infant had intracardiac shunt lesions and 13 had increased pulmonary vascular resistance. During catheterisation the patients inhaled nitric oxide in a concentration of 40 parts per million in room air. Pulmonary and systemic haemodynamic variables were evaluated by means of measured oxygen consumption and the Fick principle before and after 10 minutes' exposure to nitric oxide. RESULTS--Inhaled nitric oxide did not affect the systemic circulation. There was a significant reduction in the pulmonary vascular resistance, but only in the 13 infants with pulmonary hypertension, in whom pulmonary vascular resistance was reduced by 34% from 8.6 (4.6) mm Hg.min.m2.l-1 (mean (SD)) to 5.7 (3.5) mm Hg.min.m2.l-1. The pulmonary circulation in infants with normal pulmonary vascular resistance was not affected. No statistically significant increase in methaemoglobin was seen, though there were large individual differences. No other side effects were seen. CONCLUSION--The present study shows that in infants with congenital heart disease inhaled nitric oxide reduced pathologically increased pulmonary vascular resistance without affecting systemic circulation and without important side effects with brief exposure.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Celermajer D. S., Cullen S., Deanfield J. E. Impairment of endothelium-dependent pulmonary artery relaxation in children with congenital heart disease and abnormal pulmonary hemodynamics. Circulation. 1993 Feb;87(2):440–446. doi: 10.1161/01.cir.87.2.440. [DOI] [PubMed] [Google Scholar]
- Chi TPL?Krovetz J. The pulmonary vascular bed in children with Down syndrome. J Pediatr. 1975 Apr;86(4):533–538. doi: 10.1016/s0022-3476(75)80142-9. [DOI] [PubMed] [Google Scholar]
- Chiodi H., Mohler J. G. Effects of exposure of blood hemoglobin to nitric oxide. Environ Res. 1985 Aug;37(2):355–363. doi: 10.1016/0013-9351(85)90116-1. [DOI] [PubMed] [Google Scholar]
- Cooney T. P., Thurlbeck W. M. Pulmonary hypoplasia in Down's syndrome. N Engl J Med. 1982 Nov 4;307(19):1170–1173. doi: 10.1056/NEJM198211043071902. [DOI] [PubMed] [Google Scholar]
- GIBSON Q. H., ROUGHTON F. J. The kinetics and equilibria of the reactions of nitric oxide with sheep haemoglobin. J Physiol. 1957 May 23;136(3):507–524. doi: 10.1113/jphysiol.1957.sp005777. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gustafsson L. E., Leone A. M., Persson M. G., Wiklund N. P., Moncada S. Endogenous nitric oxide is present in the exhaled air of rabbits, guinea pigs and humans. Biochem Biophys Res Commun. 1991 Dec 16;181(2):852–857. doi: 10.1016/0006-291x(91)91268-h. [DOI] [PubMed] [Google Scholar]
- Haworth S. G. Pulmonary vascular bed in children with complete atrioventricular septal defect: relation between structural and hemodynamic abnormalities. Am J Cardiol. 1986 Apr 1;57(10):833–839. doi: 10.1016/0002-9149(86)90623-5. [DOI] [PubMed] [Google Scholar]
- Hoffman J. I., Rudolph A. M., Heymann M. A. Pulmonary vascular disease with congenital heart lesions: pathologic features and causes. Circulation. 1981 Nov;64(5):873–877. doi: 10.1161/01.cir.64.5.873. [DOI] [PubMed] [Google Scholar]
- Hopkins R. A., Bull C., Haworth S. G., de Leval M. R., Stark J. Pulmonary hypertensive crises following surgery for congenital heart defects in young children. Eur J Cardiothorac Surg. 1991;5(12):628–634. doi: 10.1016/1010-7940(91)90118-4. [DOI] [PubMed] [Google Scholar]
- Hugod C. Effect of exposure to 43 ppm nitric oxide and 3.6 ppm nitrogen dioxide on rabbit lung. A light and electron microscopic study. Int Arch Occup Environ Health. 1979 Jan 15;42(3-4):159–167. doi: 10.1007/BF00377770. [DOI] [PubMed] [Google Scholar]
- Ignarro L. J., Buga G. M., Wood K. S., Byrns R. E., Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9265–9269. doi: 10.1073/pnas.84.24.9265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kimble K. J., Darnall R. A., Jr, Yelderman M., Ariagno R. L., Ream A. K. An automated oscillometric technique for estimating mean arterial pressure in critically ill newborns. Anesthesiology. 1981 May;54(5):423–425. doi: 10.1097/00000542-198105000-00016. [DOI] [PubMed] [Google Scholar]
- Kinsella J. P., Neish S. R., Shaffer E., Abman S. H. Low-dose inhalation nitric oxide in persistent pulmonary hypertension of the newborn. Lancet. 1992 Oct 3;340(8823):819–820. doi: 10.1016/0140-6736(92)92687-b. [DOI] [PubMed] [Google Scholar]
- Levine O. R., Simpser M. Alveolar hypoventilation and cor pulmonale associated with chronic airway obstruction in infants with Down syndrome. Clin Pediatr (Phila) 1982 Jan;21(1):25–29. doi: 10.1177/000992288202100104. [DOI] [PubMed] [Google Scholar]
- Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
- Palmer R. M., Ferrige A. G., Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987 Jun 11;327(6122):524–526. doi: 10.1038/327524a0. [DOI] [PubMed] [Google Scholar]
- Pearl R. G. Inhaled nitric oxide. The past, the present, and the future. Anesthesiology. 1993 Mar;78(3):413–416. [PubMed] [Google Scholar]
- Persson M. G., Gustafsson L. E., Wiklund N. P., Moncada S., Hedqvist P. Endogenous nitric oxide as a probable modulator of pulmonary circulation and hypoxic pressor response in vivo. Acta Physiol Scand. 1990 Dec;140(4):449–457. doi: 10.1111/j.1748-1716.1990.tb09021.x. [DOI] [PubMed] [Google Scholar]
- Rich S., Brundage B. H. Pulmonary hypertension: a cellular basis for understanding the pathophysiology and treatment. J Am Coll Cardiol. 1989 Sep;14(3):545–550. doi: 10.1016/0735-1097(89)90090-9. [DOI] [PubMed] [Google Scholar]
- Roberts J. D., Jr, Lang P., Bigatello L. M., Vlahakes G. J., Zapol W. M. Inhaled nitric oxide in congenital heart disease. Circulation. 1993 Feb;87(2):447–453. doi: 10.1161/01.cir.87.2.447. [DOI] [PubMed] [Google Scholar]
- Roberts J. D., Polaner D. M., Lang P., Zapol W. M. Inhaled nitric oxide in persistent pulmonary hypertension of the newborn. Lancet. 1992 Oct 3;340(8823):818–819. doi: 10.1016/0140-6736(92)92686-a. [DOI] [PubMed] [Google Scholar]
- Rossaint R., Falke K. J., López F., Slama K., Pison U., Zapol W. M. Inhaled nitric oxide for the adult respiratory distress syndrome. N Engl J Med. 1993 Feb 11;328(6):399–405. doi: 10.1056/NEJM199302113280605. [DOI] [PubMed] [Google Scholar]
- Selldén H., Winberg P., Gustafsson L. E., Lundell B., Bök K., Frostell C. G. Inhalation of nitric oxide reduced pulmonary hypertension after cardiac surgery in a 3.2-kg infant. Anesthesiology. 1993 Mar;78(3):577–580. doi: 10.1097/00000542-199303000-00021. [DOI] [PubMed] [Google Scholar]
