Skip to main content
British Heart Journal logoLink to British Heart Journal
. 1995 Feb;73(2):134–138. doi: 10.1136/hrt.73.2.134

Differential autonomic mechanisms underlying early morning and daytime transient myocardial ischaemia in patients with stable coronary artery disease.

A J van Boven 1, J Brouwer 1, H J Crijns 1, J Haaksma 1, K I Lie 1
PMCID: PMC483779  PMID: 7696022

Abstract

OBJECTIVES--To see whether autonomic regulatory mechanisms play a part in transient myocardial ischaemia in patients treated with beta blockers. DESIGN--Prospective study. SETTING--Outpatients' clinic. PATIENTS--51 consecutive patients with angiographically documented coronary artery disease, stable angina, and transient myocardial ischaemia despite beta blockade. INTERVENTIONS--24 hour ambulatory electrocardiographic monitoring for analysis of variability in ST depression and heart rate. MAIN OUTCOME MEASURES--Numbers of episodes of ischaemia, with an ST depression of > or = 0.1 mV 80 ms after the J point that lasted > or = 60 s at an interval of > or = 60 s from a previous ischaemic episode. Heart rate at onset of ischaemia. Normalised spectral analysis of heart rate variability; ratio of low to high frequency power to assess the sympathovagal balance. RESULTS--Despite treatment, 258 episodes of transient ischaemia were recorded. At heart rates at onset of ischaemia of < 70 beats per minute a high ratio of low to high frequency power accompanied the ischaemic events and was paralleled by a remarkably reduced high frequency power. The high ratio--that is, enhanced sympathetic tone during ischaemia--was mainly found in the early morning. By contrast, ischaemic episodes with heart rates at onset of > or = 70 beats per minute were not associated with significant changes in the parameters of autonomic function. CONCLUSIONS--During beta blockade the residual transient ischaemia is associated with decreased variability in heart rate. In particular, in ischaemic episodes with a low heart rate at onset the neural regulation of the heart plays a part. Apparently, variability in heart rate is not sufficiently modified by beta blockers to prevent all ischaemia. The ischaemia related change in the autonomic nervous system during the early morning is in agreement with previous studies, showing increased cardiovascular risk at this time of the day.

Full text

PDF
134

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akselrod S., Gordon D., Ubel F. A., Shannon D. C., Berger A. C., Cohen R. J. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science. 1981 Jul 10;213(4504):220–222. doi: 10.1126/science.6166045. [DOI] [PubMed] [Google Scholar]
  2. Arai Y., Saul J. P., Albrecht P., Hartley L. H., Lilly L. S., Cohen R. J., Colucci W. S. Modulation of cardiac autonomic activity during and immediately after exercise. Am J Physiol. 1989 Jan;256(1 Pt 2):H132–H141. doi: 10.1152/ajpheart.1989.256.1.H132. [DOI] [PubMed] [Google Scholar]
  3. Bigger J. T., Jr, Fleiss J. L., Rolnitzky L. M., Steinman R. C. Frequency domain measures of heart period variability to assess risk late after myocardial infarction. J Am Coll Cardiol. 1993 Mar 1;21(3):729–736. doi: 10.1016/0735-1097(93)90106-b. [DOI] [PubMed] [Google Scholar]
  4. Binkley P. F., Nunziata E., Haas G. J., Nelson S. D., Cody R. J. Parasympathetic withdrawal is an integral component of autonomic imbalance in congestive heart failure: demonstration in human subjects and verification in a paced canine model of ventricular failure. J Am Coll Cardiol. 1991 Aug;18(2):464–472. doi: 10.1016/0735-1097(91)90602-6. [DOI] [PubMed] [Google Scholar]
  5. Casadei B., Pipilis A., Sessa F., Conway J., Sleight P. Low doses of scopolamine increase cardiac vagal tone in the acute phase of myocardial infarction. Circulation. 1993 Aug;88(2):353–357. doi: 10.1161/01.cir.88.2.353. [DOI] [PubMed] [Google Scholar]
  6. Chess G. F., Tam R. M., Calaresu F. R. Influence of cardiac neural inputs on rhythmic variations of heart period in the cat. Am J Physiol. 1975 Mar;228(3):775–780. doi: 10.1152/ajplegacy.1975.228.3.775. [DOI] [PubMed] [Google Scholar]
  7. Cook J. R., Bigger J. T., Jr, Kleiger R. E., Fleiss J. L., Steinman R. C., Rolnitzky L. M. Effect of atenolol and diltiazem on heart period variability in normal persons. J Am Coll Cardiol. 1991 Feb;17(2):480–484. doi: 10.1016/s0735-1097(10)80119-6. [DOI] [PubMed] [Google Scholar]
  8. Farrell T. G., Bashir Y., Cripps T., Malik M., Poloniecki J., Bennett E. D., Ward D. E., Camm A. J. Risk stratification for arrhythmic events in postinfarction patients based on heart rate variability, ambulatory electrocardiographic variables and the signal-averaged electrocardiogram. J Am Coll Cardiol. 1991 Sep;18(3):687–697. doi: 10.1016/0735-1097(91)90791-7. [DOI] [PubMed] [Google Scholar]
  9. Furlan R., Guzzetti S., Crivellaro W., Dassi S., Tinelli M., Baselli G., Cerutti S., Lombardi F., Pagani M., Malliani A. Continuous 24-hour assessment of the neural regulation of systemic arterial pressure and RR variabilities in ambulant subjects. Circulation. 1990 Feb;81(2):537–547. doi: 10.1161/01.cir.81.2.537. [DOI] [PubMed] [Google Scholar]
  10. Hayano J., Sakakibara Y., Yamada M., Ohte N., Fujinami T., Yokoyama K., Watanabe Y., Takata K. Decreased magnitude of heart rate spectral components in coronary artery disease. Its relation to angiographic severity. Circulation. 1990 Apr;81(4):1217–1224. doi: 10.1161/01.cir.81.4.1217. [DOI] [PubMed] [Google Scholar]
  11. Kleiger R. E., Miller J. P., Bigger J. T., Jr, Moss A. J. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol. 1987 Feb 1;59(4):256–262. doi: 10.1016/0002-9149(87)90795-8. [DOI] [PubMed] [Google Scholar]
  12. Koizumi K., Kollai M. Multiple modes of operation of cardiac autonomic control: development of the ideas from Cannon and Brooks to the present. J Auton Nerv Syst. 1992 Nov;41(1-2):19–29. doi: 10.1016/0165-1838(92)90123-x. [DOI] [PubMed] [Google Scholar]
  13. Lambert C. R., Coy K., Imperi G., Pepine C. J. Influence of beta-adrenergic blockade defined by time series analysis on circadian variation of heart rate and ambulatory myocardial ischemia. Am J Cardiol. 1989 Oct 15;64(14):835–839. doi: 10.1016/0002-9149(89)90827-8. [DOI] [PubMed] [Google Scholar]
  14. Malik M., Farrell T., Camm A. J. Circadian rhythm of heart rate variability after acute myocardial infarction and its influence on the prognostic value of heart rate variability. Am J Cardiol. 1990 Nov 1;66(15):1049–1054. doi: 10.1016/0002-9149(90)90503-s. [DOI] [PubMed] [Google Scholar]
  15. Martin G. J., Magid N. M., Myers G., Barnett P. S., Schaad J. W., Weiss J. S., Lesch M., Singer D. H. Heart rate variability and sudden death secondary to coronary artery disease during ambulatory electrocardiographic monitoring. Am J Cardiol. 1987 Jul 1;60(1):86–89. doi: 10.1016/0002-9149(87)90990-8. [DOI] [PubMed] [Google Scholar]
  16. Morikami Y., Yasue H., Okumura K., Horio Y., Fujii H., Matsuyama K. Effects of phentolamine and atropine on angina pectoris induced by handgrip test in patients with variant angina. Am J Cardiol. 1988 Jan 1;61(1):71–76. doi: 10.1016/0002-9149(88)91307-0. [DOI] [PubMed] [Google Scholar]
  17. Muller J. E., Ludmer P. L., Willich S. N., Tofler G. H., Aylmer G., Klangos I., Stone P. H. Circadian variation in the frequency of sudden cardiac death. Circulation. 1987 Jan;75(1):131–138. doi: 10.1161/01.cir.75.1.131. [DOI] [PubMed] [Google Scholar]
  18. Muller J. E., Tofler G. H., Stone P. H. Circadian variation and triggers of onset of acute cardiovascular disease. Circulation. 1989 Apr;79(4):733–743. doi: 10.1161/01.cir.79.4.733. [DOI] [PubMed] [Google Scholar]
  19. Myers G. A., Martin G. J., Magid N. M., Barnett P. S., Schaad J. W., Weiss J. S., Lesch M., Singer D. H. Power spectral analysis of heart rate variability in sudden cardiac death: comparison to other methods. IEEE Trans Biomed Eng. 1986 Dec;33(12):1149–1156. doi: 10.1109/TBME.1986.325694. [DOI] [PubMed] [Google Scholar]
  20. Mølgaard H., Mickley H., Pless P., Bjerregaard P., Møller M. Effects of metoprolol on heart rate variability in survivors of acute myocardial infarction. Am J Cardiol. 1993 Jun 1;71(15):1357–1359. doi: 10.1016/0002-9149(93)90555-q. [DOI] [PubMed] [Google Scholar]
  21. Pagani M., Lombardi F., Guzzetti S., Rimoldi O., Furlan R., Pizzinelli P., Sandrone G., Malfatto G., Dell'Orto S., Piccaluga E. Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ Res. 1986 Aug;59(2):178–193. doi: 10.1161/01.res.59.2.178. [DOI] [PubMed] [Google Scholar]
  22. Richards A. M., Nicholls M. G., Espiner E. A., Ikram H., Cullens M., Hinton D. Diurnal patterns of blood pressure, heart rate and vasoactive hormones in normal man. Clin Exp Hypertens A. 1986;8(2):153–166. doi: 10.3109/10641968609074769. [DOI] [PubMed] [Google Scholar]
  23. Rozanski A., Bairey C. N., Krantz D. S., Friedman J., Resser K. J., Morell M., Hilton-Chalfen S., Hestrin L., Bietendorf J., Berman D. S. Mental stress and the induction of silent myocardial ischemia in patients with coronary artery disease. N Engl J Med. 1988 Apr 21;318(16):1005–1012. doi: 10.1056/NEJM198804213181601. [DOI] [PubMed] [Google Scholar]
  24. Suematsu M., Ito Y., Fukuzaki H. The role of parasympathetic nerve activity in the pathogenesis of coronary vasospasm. Jpn Heart J. 1987 Sep;28(5):649–661. doi: 10.1536/ihj.28.649. [DOI] [PubMed] [Google Scholar]
  25. Turton M. B., Deegan T. Circadian variations of plasma catecholamine, cortisol and immunoreactive insulin concentrations in supine subjects. Clin Chim Acta. 1974 Sep 30;55(3):389–397. doi: 10.1016/0009-8981(74)90014-x. [DOI] [PubMed] [Google Scholar]

Articles from British Heart Journal are provided here courtesy of BMJ Publishing Group

RESOURCES