Abstract
OBJECTIVE--To relate the mechanism of luminal gain after directional atherectomy and balloon angioplasty to the morphological characteristics of the coronary lesions, assessed by intravascular ultrasound imaging. DESIGN--Intravascular ultrasound imaging was performed before and after the revascularisation procedure to assess the contribution of wall stretching and plaque reduction in luminal gain. SUBJECTS--32 patients undergoing balloon angioplasty and 29 undergoing directional coronary atherectomy. MAIN RESULTS--The main luminal area in vessels treated by balloon angioplasty increased from 1.51 (SD 0.30) to 3.91 (1.09) mm2 (P < 0.0001) with a concomitant increase in total vessel area from 11.44 (2.73) to 13.07 (2.83) mm2 (P < 0.0001). Therefore stretching of the vessel wall accounted for 68% of the luminal gain while plaque reduction accounted for the remaining 32%. This mechanism ranged from 45% in non-calcific plaques to 81% in echogenic plaques. The main luminal area in vessels treated by directional atherectomy increased from 1.49 (0.32) to 4.68 (1.73) mm2 (P < 0.0001), with a concomitant increase of total vessel area from 13.61 (4.67) to 15.2 (4.04) mm2 (P = 0.006). Thus stretching of the vessel wall accounted for 49% of the luminal area gain and plaque reduction for the remaining 51%. The presence of calcium influenced the relative contribution of these two mechanisms to the final luminal gain after directional atherectomy, since in calcific plaques stretching of the vessel wall accounted for only 9% of the luminal gain as compared to 56% in non-calcific plaques. After balloon angioplasty there was greater evidence of coronary dissections (32% v 3% after directional atherectomy, P < 0.01) and plaque fissure (60% v 0%, P < 0.01). Plaque fissure was more frequently seen in echolucent and concentric lesions, whereas dissections prevailed in echogenic and eccentric lesions. CONCLUSIONS--Intravascular ultrasound imaging may allow the assessment of acute changes in lumen and vessel wall after revascularisation procedures, and help in evaluating the potential effect of the structure and morphology of coronary lesions on the mechanism of luminal enlargement.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alfonso F., Macaya C., Goicolea J., Iñiguez A., Hernandez R., Bañuelos C., Castillo J. A., Zarco P. Angiographic changes induced by intracoronary ultrasound imaging before and after coronary angioplasty. Am Heart J. 1993 Mar;125(3):877–880. doi: 10.1016/0002-8703(93)90184-b. [DOI] [PubMed] [Google Scholar]
- Block P. C., Baughman K. L., Pasternak R. C., Fallon J. T. Transluminal angioplasty: correlation of morphologic and angiographic findings in an experimental model. Circulation. 1980 Apr;61(4):778–785. doi: 10.1161/01.cir.61.4.778. [DOI] [PubMed] [Google Scholar]
- Braden G. A., Herrington D. M., Downes T. R., Kutcher M. A., Little W. C. Qualitative and quantitative contrasts in the mechanisms of lumen enlargement by coronary balloon angioplasty and directional coronary atherectomy. J Am Coll Cardiol. 1994 Jan;23(1):40–48. doi: 10.1016/0735-1097(94)90500-2. [DOI] [PubMed] [Google Scholar]
- Faxon D. P., Weber V. J., Haudenschild C., Gottsman S. B., McGovern W. A., Ryan T. J. Acute effects of transluminal angioplasty in three experimental models of atherosclerosis. Arteriosclerosis. 1982 Mar-Apr;2(2):125–133. doi: 10.1161/01.atv.2.2.125. [DOI] [PubMed] [Google Scholar]
- Fitzgerald P. J., Ports T. A., Yock P. G. Contribution of localized calcium deposits to dissection after angioplasty. An observational study using intravascular ultrasound. Circulation. 1992 Jul;86(1):64–70. doi: 10.1161/01.cir.86.1.64. [DOI] [PubMed] [Google Scholar]
- Honye J., Mahon D. J., Jain A., White C. J., Ramee S. R., Wallis J. B., al-Zarka A., Tobis J. M. Morphological effects of coronary balloon angioplasty in vivo assessed by intravascular ultrasound imaging. Circulation. 1992 Mar;85(3):1012–1025. doi: 10.1161/01.cir.85.3.1012. [DOI] [PubMed] [Google Scholar]
- Isner J. M., Rosenfield K., Losordo D. W., Rose L., Langevin R. E., Jr, Razvi S., Kosowsky B. D. Combination balloon-ultrasound imaging catheter for percutaneous transluminal angioplasty. Validation of imaging, analysis of recoil, and identification of plaque fracture. Circulation. 1991 Aug;84(2):739–754. doi: 10.1161/01.cir.84.2.739. [DOI] [PubMed] [Google Scholar]
- Keren G., Pichard A. D., Kent K. M., Satler L. F., Leon M. B. Failure or success of complex catheter-based interventional procedures assessed by intravascular ultrasound. Am Heart J. 1992 Jan;123(1):200–208. doi: 10.1016/0002-8703(92)90766-o. [DOI] [PubMed] [Google Scholar]
- Mintz G. S., Pichard A. D., Kovach J. A., Kent K. M., Satler L. F., Javier S. P., Popma J. J., Leon M. B. Impact of preintervention intravascular ultrasound imaging on transcatheter treatment strategies in coronary artery disease. Am J Cardiol. 1994 Mar 1;73(7):423–430. doi: 10.1016/0002-9149(94)90670-x. [DOI] [PubMed] [Google Scholar]
- Nissen S. E., Gurley J. C., Grines C. L., Booth D. C., McClure R., Berk M., Fischer C., DeMaria A. N. Intravascular ultrasound assessment of lumen size and wall morphology in normal subjects and patients with coronary artery disease. Circulation. 1991 Sep;84(3):1087–1099. doi: 10.1161/01.cir.84.3.1087. [DOI] [PubMed] [Google Scholar]
- Potkin B. N., Bartorelli A. L., Gessert J. M., Neville R. F., Almagor Y., Roberts W. C., Leon M. B. Coronary artery imaging with intravascular high-frequency ultrasound. Circulation. 1990 May;81(5):1575–1585. doi: 10.1161/01.cir.81.5.1575. [DOI] [PubMed] [Google Scholar]
- Potkin B. N., Keren G., Mintz G. S., Douek P. C., Pichard A. D., Satler L. F., Kent K. M., Leon M. B. Arterial responses to balloon coronary angioplasty: an intravascular ultrasound study. J Am Coll Cardiol. 1992 Oct;20(4):942–951. doi: 10.1016/0735-1097(92)90197-u. [DOI] [PubMed] [Google Scholar]
- Potkin B. N., Roberts W. C. Effects of percutaneous transluminal coronary angioplasty on atherosclerotic plaques and relation of plaque composition and arterial size to outcome. Am J Cardiol. 1988 Jul 1;62(1):41–50. doi: 10.1016/0002-9149(88)91362-8. [DOI] [PubMed] [Google Scholar]
- Safian R. D., Gelbfish J. S., Erny R. E., Schnitt S. J., Schmidt D. A., Baim D. S. Coronary atherectomy. Clinical, angiographic, and histological findings and observations regarding potential mechanisms. Circulation. 1990 Jul;82(1):69–79. doi: 10.1161/01.cir.82.1.69. [DOI] [PubMed] [Google Scholar]
- Soward A. L., Essed C. E., Serruys P. W. Coronary arterial findings after accidental death immediately after successful percutaneous transluminal coronary angioplasty. Am J Cardiol. 1985 Nov 1;56(12):794–795. doi: 10.1016/0002-9149(85)91141-5. [DOI] [PubMed] [Google Scholar]
- Suneja R., Nair R. N., Reddy K. G., Rasheed Q., Sheehan H. M., Hodgson J. M. Mechanisms of angiographically successful directional coronary atherectomy: evaluation by intracoronary ultrasound and comparison with transluminal coronary angioplasty. Am Heart J. 1993 Sep;126(3 Pt 1):507–514. doi: 10.1016/0002-8703(93)90397-r. [DOI] [PubMed] [Google Scholar]
- Tenaglia A. N., Buller C. E., Kisslo K. B., Phillips H. R., Stack R. S., Davidson C. J. Intracoronary ultrasound predictors of adverse outcomes after coronary artery interventions. J Am Coll Cardiol. 1992 Nov 15;20(6):1385–1390. doi: 10.1016/0735-1097(92)90252-i. [DOI] [PubMed] [Google Scholar]
- Tenaglia A. N., Buller C. E., Kisslo K. B., Stack R. S., Davidson C. J. Mechanisms of balloon angioplasty and directional coronary atherectomy as assessed by intracoronary ultrasound. J Am Coll Cardiol. 1992 Sep;20(3):685–691. doi: 10.1016/0735-1097(92)90025-i. [DOI] [PubMed] [Google Scholar]
- Waller B. F. "Crackers, breakers, stretchers, drillers, scrapers, shavers, burners, welders and melters"--the future treatment of atherosclerotic coronary artery disease? A clinical-morphologic assessment. J Am Coll Cardiol. 1989 Apr;13(5):969–987. doi: 10.1016/0735-1097(89)90248-9. [DOI] [PubMed] [Google Scholar]
- Waller B. F. Early and late morphologic changes in human coronary arteries after percutaneous transluminal coronary angioplasty. Clin Cardiol. 1983 Aug;6(8):363–372. doi: 10.1002/clc.4960060802. [DOI] [PubMed] [Google Scholar]

