Abstract
OBJECTIVE--Right ventricular regional contractility has been thought to be difficult to assess precisely. Cine magnetic resonance imaging with presaturation myocardial tagging was employed to quantitate the contraction of the right ventricular free wall and to identify normal performance compared with the left ventricle. METHODS--Nine normal volunteers, aged 27-39 years, were examined in a 1.5 Tesla superconductive magnet, and short axis and four-chamber sections at the mid-ventricular level were imaged with cine magnetic resonance sequences. Tags, applied at end diastole as two parallel black lines, intersected the mid-portion of the free wall, dividing it into upper, centre, and lower segments in the short axis section, and anterior, middle, and posterior segments in the four-chamber section. From a series of cine magnetic resonance images at 50 ms intervals over a cardiac cycle, end diastolic, and early, mid-, and end systolic images were chosen for calculation of the endocardial, epicardial, and mean percent fractional shortening (%FS) in the six segments. RESULTS--There was (1) a gradual increase in %FS in systole in both sections (P < 0.001, < 0.005); (2) a poor transmural gradient of contractility; (3) a predominance of meridional shortening (whole length, mean end systolic %FS (SD): short axis, 17.4 (3.1)%; four-chamber, 30.1 (4.1)%; P < 0.001) in contrast to dominant circumferential shortening in the left ventricular lateral wall; (4) lower predominance of contractility in the short axis section (P < 0.001), and a middle dip of contractility in the four-chamber section (P < 0.005). CONCLUSIONS--Heterogeneity of contractility was closely correlated with the myocardial fibre architecture, and with wall stress determined by its thickness and curvature. It was proved that right ventricular regional function could be analysed non-invasively using cine magnetic resonance imaging with myocardial tagging.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ANGELAKOS E. T. REGIONAL DISTRIBUTION OF CATECHOLAMINES IN THE DOG HEART. Circ Res. 1965 Jan;16:39–44. doi: 10.1161/01.res.16.1.39. [DOI] [PubMed] [Google Scholar]
- ANZOLA J. Right ventricular contraction. Am J Physiol. 1956 Mar;184(3):567–571. doi: 10.1152/ajplegacy.1956.184.3.567. [DOI] [PubMed] [Google Scholar]
- Armour J. A., Randall W. C. Structural basis for cardiac function. Am J Physiol. 1970 Jun;218(6):1517–1523. doi: 10.1152/ajplegacy.1970.218.6.1517. [DOI] [PubMed] [Google Scholar]
- Axel L., Dougherty L. Heart wall motion: improved method of spatial modulation of magnetization for MR imaging. Radiology. 1989 Aug;172(2):349–350. doi: 10.1148/radiology.172.2.2748813. [DOI] [PubMed] [Google Scholar]
- Berger H. J., Matthay R. A., Loke J., Marshall R. C., Gottschalk A., Zaret B. L. Assessment of cardiac performance with quantitative radionuclide angiocardiography: right ventricular ejection fraction with reference to findings in chronic obstructive pulmonary disease. Am J Cardiol. 1978 May 1;41(5):897–905. doi: 10.1016/0002-9149(78)90731-2. [DOI] [PubMed] [Google Scholar]
- Clark N. R., Reichek N., Bergey P., Hoffman E. A., Brownson D., Palmon L., Axel L. Circumferential myocardial shortening in the normal human left ventricle. Assessment by magnetic resonance imaging using spatial modulation of magnetization. Circulation. 1991 Jul;84(1):67–74. doi: 10.1161/01.cir.84.1.67. [DOI] [PubMed] [Google Scholar]
- Durrer D., van Dam R. T., Freud G. E., Janse M. J., Meijler F. L., Arzbaecher R. C. Total excitation of the isolated human heart. Circulation. 1970 Jun;41(6):899–912. doi: 10.1161/01.cir.41.6.899. [DOI] [PubMed] [Google Scholar]
- Ferlinz J., Gorlin R., Cohn P. F., Herman M. V. Right ventricular performance in patients with coronary artery disease. Circulation. 1975 Oct;52(4):608–615. doi: 10.1161/01.cir.52.4.608. [DOI] [PubMed] [Google Scholar]
- Gallagher K. P., Osakada G., Matsuzaki M., Miller M., Kemper W. S., Ross J., Jr Nonuniformity of inner and outer systolic wall thickening in conscious dogs. Am J Physiol. 1985 Aug;249(2 Pt 2):H241–H248. doi: 10.1152/ajpheart.1985.249.2.H241. [DOI] [PubMed] [Google Scholar]
- Gentzler R. D., 2nd, Briselli M. F., Gault J. H. Angiographic estimation of right ventricular volume in man. Circulation. 1974 Aug;50(2):324–330. doi: 10.1161/01.cir.50.2.324. [DOI] [PubMed] [Google Scholar]
- Greenbaum R. A., Ho S. Y., Gibson D. G., Becker A. E., Anderson R. H. Left ventricular fibre architecture in man. Br Heart J. 1981 Mar;45(3):248–263. doi: 10.1136/hrt.45.3.248. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Homans D. C., Sublett E., Lindstrom P., Nesbitt T., Bache R. J. Subendocardial and subepicardial wall thickening during ischemia in exercising dogs. Circulation. 1988 Nov;78(5 Pt 1):1267–1276. doi: 10.1161/01.cir.78.5.1267. [DOI] [PubMed] [Google Scholar]
- LeWinter M. M., Kent R. S., Kroener J. M., Carew T. E., Covell J. W. Regional differences in myocardial performance in the left ventricle of the dog. Circ Res. 1975 Aug;37(2):191–199. doi: 10.1161/01.res.37.2.191. [DOI] [PubMed] [Google Scholar]
- Maddahi J., Berman D. S., Matsuoka D. T., Waxman A. D., Stankus K. E., Forrester J. S., Swan H. J. A new technique for assessing right ventricular ejection fraction using rapid multiple-gated equilibrium cardiac blood pool scintigraphy. Description, validation and findings in chronic coronary artery disease. Circulation. 1979 Sep;60(3):581–589. doi: 10.1161/01.cir.60.3.581. [DOI] [PubMed] [Google Scholar]
- Naito H., Kimura M., Ohta M., Kimura K., Takamiya M., Kozuka T. [Evaluation of right ventricular wall contractility in ischemic heart disease by cardiac computed tomography]. J Cardiogr. 1984 Jun;14(1):15–28. [PubMed] [Google Scholar]
- Pierpont G. L., DeMaster E. G., Cohn J. N. Regional differences in adrenergic function within the left ventricle. Am J Physiol. 1984 Jun;246(6 Pt 2):H824–H829. doi: 10.1152/ajpheart.1984.246.6.H824. [DOI] [PubMed] [Google Scholar]
- Raines R. A., LeWinter M. M., Covell J. W. Regional shortening patterns in canine right ventricle. Am J Physiol. 1976 Nov;231(5 Pt 1):1395–1400. doi: 10.1152/ajplegacy.1976.231.5.1395. [DOI] [PubMed] [Google Scholar]
- Redington A. N., Gray H. H., Hodson M. E., Rigby M. L., Oldershaw P. J. Characterisation of the normal right ventricular pressure-volume relation by biplane angiography and simultaneous micromanometer pressure measurements. Br Heart J. 1988 Jan;59(1):23–30. doi: 10.1136/hrt.59.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shapiro E., Marier D. L., St John Sutton M. G., Gibson D. G. Regional non-uniformity of wall dynamics in normal left ventricle. Br Heart J. 1981 Mar;45(3):264–270. doi: 10.1136/hrt.45.3.264. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Streeter D. D., Jr, Spotnitz H. M., Patel D. P., Ross J., Jr, Sonnenblick E. H. Fiber orientation in the canine left ventricle during diastole and systole. Circ Res. 1969 Mar;24(3):339–347. doi: 10.1161/01.res.24.3.339. [DOI] [PubMed] [Google Scholar]
- Zerhouni E. A., Parish D. M., Rogers W. J., Yang A., Shapiro E. P. Human heart: tagging with MR imaging--a method for noninvasive assessment of myocardial motion. Radiology. 1988 Oct;169(1):59–63. doi: 10.1148/radiology.169.1.3420283. [DOI] [PubMed] [Google Scholar]