Skip to main content
British Heart Journal logoLink to British Heart Journal
. 1995 Oct;74(4):381–385. doi: 10.1136/hrt.74.4.381

Inspiratory muscle strength is a determinant of maximum oxygen consumption in chronic heart failure.

T P Chua 1, S D Anker 1, D Harrington 1, A J Coats 1
PMCID: PMC484043  PMID: 7488451

Abstract

OBJECTIVE--To investigate the significance of respiratory muscle weakness in chronic heart failure and its relation both to maximum oxygen consumption during cardiopulmonary exercise testing and to skeletal muscle (quadriceps) strength. SUBJECTS--Seven healthy men aged 54.9 (SEM 4.3) years and 20 men with chronic heart failure aged 61.4 (1.6) years (P = 0.20) with radionuclide left ventricular ejection fraction of 25.4 (3.0)%. METHODS--Mouth pressures during maximum static inspiratory effort (PImax) at functional residual capacity (FRC) and residual volume (RV) were measured in all subjects and taken as indices of inspiratory muscle strength. Similarly, mouth pressures during maximum static expiratory effort (PEmax) at FRC and total lung capacity (TLC) were taken as indices of expiratory muscle strength. Cardiopulmonary exercise testing was performed in all subjects. All controls and 15 heart failure patients also had their right quadriceps muscle strength measured. RESULTS--There was respiratory muscle weakness in heart failure patients, with reduction of PImax at FRC (59.7) (6.3) v 85.6 (9.6) cm H2O, P = 0.045), PEmax at FRC (94.8 (6.2) v 134.6 (9.1) cm H2O, P = 0.004), and PEmax at TLC (121.7 (8.5) v 160.7 (13) cm H2O, P = 0.028). PImax at RV was also reduced but this did not reach statistical significance (77.3 (6.6) v 89.3 (13) cm H2O, P = 0.44). There was also significant weakness of the right quadriceps muscle (308.5 (22) v 446.2 (28) N, P = 0.001). PImax at both FRC and RV correlated with maximum oxygen consumption (r = 0.59, P = 0.006, and r = 0.45, P = 0.048 respectively) but not PEmax. There was, however, no significant correlation between PImax and right quadriceps strength. CONCLUSIONS--Respiratory muscle weakness is seen in chronic heart failure. The results suggest that inspiratory muscles are important in determining maximum oxygen consumption and exercise tolerance in these patients. The lack of correlation between respiratory and right quadriceps muscle strength further suggests that the magnitude and time course of respiratory and locomotor muscle weakness may differ in individual patients. Treatment aimed at improving the function of the involved muscle groups may alleviate symptoms.

Full text

PDF
381

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRUCE R. A., BLACKMON J. R., JONES J. W., STRAIT G. EXERCISING TESTING IN ADULT NORMAL SUBJECTS AND CARDIAC PATIENTS. Pediatrics. 1963 Oct;32:SUPPL–756. [PubMed] [Google Scholar]
  2. Black L. F., Hyatt R. E. Maximal respiratory pressures: normal values and relationship to age and sex. Am Rev Respir Dis. 1969 May;99(5):696–702. doi: 10.1164/arrd.1969.99.5.696. [DOI] [PubMed] [Google Scholar]
  3. Buller N. P., Jones D., Poole-Wilson P. A. Direct measurement of skeletal muscle fatigue in patients with chronic heart failure. Br Heart J. 1991 Jan;65(1):20–24. doi: 10.1136/hrt.65.1.20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Coats A. J., Adamopoulos S., Radaelli A., McCance A., Meyer T. E., Bernardi L., Solda P. L., Davey P., Ormerod O., Forfar C. Controlled trial of physical training in chronic heart failure. Exercise performance, hemodynamics, ventilation, and autonomic function. Circulation. 1992 Jun;85(6):2119–2131. doi: 10.1161/01.cir.85.6.2119. [DOI] [PubMed] [Google Scholar]
  5. Coats A. J., Clark A. L., Piepoli M., Volterrani M., Poole-Wilson P. A. Symptoms and quality of life in heart failure: the muscle hypothesis. Br Heart J. 1994 Aug;72(2 Suppl):S36–S39. doi: 10.1136/hrt.72.2_suppl.s36. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Davies N. J., Denison D. M. The measurement of metabolic gas exchange and minute volume by mass spectrometry alone. Respir Physiol. 1979 Feb;36(2):261–267. doi: 10.1016/0034-5687(79)90029-x. [DOI] [PubMed] [Google Scholar]
  7. Faggiano P., Lombardi C., Sorgato A., Ghizzoni G., Spedini C., Rusconi C. Pulmonary function tests in patients with congestive heart failure: effects of medical therapy. Cardiology. 1993;83(1-2):30–35. doi: 10.1159/000175944. [DOI] [PubMed] [Google Scholar]
  8. HEATH D., EDWARDS J. E. Histological changes in the lung in diseases associated with pulmonary venous hypertension. Br J Dis Chest. 1959 Jan;53(1):8–18. doi: 10.1016/s0007-0971(59)80105-4. [DOI] [PubMed] [Google Scholar]
  9. Hammond M. D., Bauer K. A., Sharp J. T., Rocha R. D. Respiratory muscle strength in congestive heart failure. Chest. 1990 Nov;98(5):1091–1094. doi: 10.1378/chest.98.5.1091. [DOI] [PubMed] [Google Scholar]
  10. Hosenpud J. D., Stibolt T. A., Atwal K., Shelley D. Abnormal pulmonary function specifically related to congestive heart failure: comparison of patients before and after cardiac transplantation. Am J Med. 1990 May;88(5):493–496. doi: 10.1016/0002-9343(90)90428-g. [DOI] [PubMed] [Google Scholar]
  11. Kay J. M., Edwards F. R. Ultrastructure of the alveolar-capillary wall in mitral stenosis. J Pathol. 1973 Dec;111(4):239–245. doi: 10.1002/path.1711110404. [DOI] [PubMed] [Google Scholar]
  12. Leith D. E., Bradley M. Ventilatory muscle strength and endurance training. J Appl Physiol. 1976 Oct;41(4):508–516. doi: 10.1152/jappl.1976.41.4.508. [DOI] [PubMed] [Google Scholar]
  13. Lenfant C. NHLBI funding policies. Enhancing stability, predictability, and cost control. Circulation. 1994 Jul;90(1):1–1. doi: 10.1161/01.cir.90.1.1. [DOI] [PubMed] [Google Scholar]
  14. Levine T. B., Levine A. B. Regional blood flow supply and demand in heart failure. Am Heart J. 1990 Dec;120(6 Pt 2):1547–1551. doi: 10.1016/0002-8703(90)90057-5. [DOI] [PubMed] [Google Scholar]
  15. Mancini D. M., Ferraro N., Nazzaro D., Chance B., Wilson J. R. Respiratory muscle deoxygenation during exercise in patients with heart failure demonstrated with near-infrared spectroscopy. J Am Coll Cardiol. 1991 Aug;18(2):492–498. doi: 10.1016/0735-1097(91)90605-9. [DOI] [PubMed] [Google Scholar]
  16. Mancini D. M., Henson D., La Manca J., Donchez L., Levine S. Benefit of selective respiratory muscle training on exercise capacity in patients with chronic congestive heart failure. Circulation. 1995 Jan 15;91(2):320–329. doi: 10.1161/01.cir.91.2.320. [DOI] [PubMed] [Google Scholar]
  17. Mancini D. M., Henson D., LaManca J., Levine S. Respiratory muscle function and dyspnea in patients with chronic congestive heart failure. Circulation. 1992 Sep;86(3):909–918. doi: 10.1161/01.cir.86.3.909. [DOI] [PubMed] [Google Scholar]
  18. Massie B. M., Conway M., Rajagopalan B., Yonge R., Frostick S., Ledingham J., Sleight P., Radda G. Skeletal muscle metabolism during exercise under ischemic conditions in congestive heart failure. Evidence for abnormalities unrelated to blood flow. Circulation. 1988 Aug;78(2):320–326. doi: 10.1161/01.cir.78.2.320. [DOI] [PubMed] [Google Scholar]
  19. McParland C., Krishnan B., Wang Y., Gallagher C. G. Inspiratory muscle weakness and dyspnea in chronic heart failure. Am Rev Respir Dis. 1992 Aug;146(2):467–472. doi: 10.1164/ajrccm/146.2.467. [DOI] [PubMed] [Google Scholar]
  20. Minotti J. R., Christoph I., Oka R., Weiner M. W., Wells L., Massie B. M. Impaired skeletal muscle function in patients with congestive heart failure. Relationship to systemic exercise performance. J Clin Invest. 1991 Dec;88(6):2077–2082. doi: 10.1172/JCI115537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Naum C. C., Sciurba F. C., Rogers R. M. Pulmonary function abnormalities in chronic severe cardiomyopathy preceding cardiac transplantation. Am Rev Respir Dis. 1992 Jun;145(6):1334–1338. doi: 10.1164/ajrccm/145.6.1334. [DOI] [PubMed] [Google Scholar]
  22. Nishimura Y., Maeda H., Tanaka K., Nakamura H., Hashimoto Y., Yokoyama M. Respiratory muscle strength and hemodynamics in chronic heart failure. Chest. 1994 Feb;105(2):355–359. doi: 10.1378/chest.105.2.355. [DOI] [PubMed] [Google Scholar]
  23. OTIS A. B., FENN W. O., RAHN H. Mechanics of breathing in man. J Appl Physiol. 1950 May;2(11):592–607. doi: 10.1152/jappl.1950.2.11.592. [DOI] [PubMed] [Google Scholar]
  24. Packer M. The neurohormonal hypothesis: a theory to explain the mechanism of disease progression in heart failure. J Am Coll Cardiol. 1992 Jul;20(1):248–254. doi: 10.1016/0735-1097(92)90167-l. [DOI] [PubMed] [Google Scholar]
  25. Parker F., Weiss S. The Nature and Significance of the Structural Changes in the Lungs in Mitral Stenosis. Am J Pathol. 1936 Sep;12(5):573–598.15. [PMC free article] [PubMed] [Google Scholar]
  26. Petermann W., Barth J., Entzian P. Heart failure and airway obstruction. Int J Cardiol. 1987 Nov;17(2):207–209. doi: 10.1016/0167-5273(87)90132-x. [DOI] [PubMed] [Google Scholar]
  27. Ravenscraft S. A., Gross C. R., Kubo S. H., Olivari M. T., Shumway S. J., Bolman R. M., 3rd, Hertz M. I. Pulmonary function after successful heart transplantation. One year follow-up. Chest. 1993 Jan;103(1):54–58. doi: 10.1378/chest.103.1.54. [DOI] [PubMed] [Google Scholar]
  28. Ries A. L., Gregoratos G., Friedman P. J., Clausen J. L. Pulmonary function tests in the detection of left heart failure: correlation with pulmonary artery wedge pressure. Respiration. 1986;49(4):241–250. doi: 10.1159/000194886. [DOI] [PubMed] [Google Scholar]
  29. Roussos C., Macklem P. T. The respiratory muscles. N Engl J Med. 1982 Sep 23;307(13):786–797. doi: 10.1056/NEJM198209233071304. [DOI] [PubMed] [Google Scholar]
  30. Schuler G., Hambrecht R., Schlierf G., Niebauer J., Hauer K., Neumann J., Hoberg E., Drinkmann A., Bacher F., Grunze M. Regular physical exercise and low-fat diet. Effects on progression of coronary artery disease. Circulation. 1992 Jul;86(1):1–11. doi: 10.1161/01.cir.86.1.1. [DOI] [PubMed] [Google Scholar]
  31. Tada H., Kato H., Misawa T., Sasaki F., Hayashi S., Takahashi H., Kutsumi Y., Ishizaki T., Nakai T., Miyabo S. 31P-nuclear magnetic resonance evidence of abnormal skeletal muscle metabolism in patients with chronic lung disease and congestive heart failure. Eur Respir J. 1992 Feb;5(2):163–169. [PubMed] [Google Scholar]
  32. Wilson J. R., Mancini D. M., Dunkman W. B. Exertional fatigue due to skeletal muscle dysfunction in patients with heart failure. Circulation. 1993 Feb;87(2):470–475. doi: 10.1161/01.cir.87.2.470. [DOI] [PubMed] [Google Scholar]
  33. Wright R. S., Levine M. S., Bellamy P. E., Simmons M. S., Batra P., Stevenson L. W., Walden J. A., Laks H., Tashkin D. P. Ventilatory and diffusion abnormalities in potential heart transplant recipients. Chest. 1990 Oct;98(4):816–820. doi: 10.1378/chest.98.4.816. [DOI] [PubMed] [Google Scholar]
  34. Yokoyama H., Sato H., Hori M., Takeda H., Kamada T. A characteristic change in ventilation mode during exertional dyspnea in patients with chronic heart failure. Chest. 1994 Oct;106(4):1007–1013. doi: 10.1378/chest.106.4.1007. [DOI] [PubMed] [Google Scholar]

Articles from British Heart Journal are provided here courtesy of BMJ Publishing Group

RESOURCES