Abstract
The development of quantitative angiography and the introduction of new imaging techniques cannot replace functional methods of assessing the severity of stenosis. Measurement of transstenotic pressure gradient and poststenotic flow velocity using miniaturised sensors with guidewire technology offers an alternative to the conventional non-invasive methods that is immediately applicable in the catheterisation laboratory during interventional procedures. The complexity of the coronary circulation, however, makes it difficult to establish simple cut-off criteria to identify the presence of a flow-limiting stenosis. For intermediate lesions or in the presence of variable haemodynamic conditions, the accuracy of the assessment can be improved by the application of more complex indices proposed and validated in the laboratory animals. Two of these indices are myocardial fractional flow reserve and the slope of the instantaneous relation between pressure or pressure gradient and flow velocity.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson H. V., Kirkeeide R. L., Krishnaswami A., Weigelt L. A., Revana M., Weisman H. F., Willerson J. T. Cyclic flow variations after coronary angioplasty in humans: clinical and angiographic characteristics and elimination with 7E3 monoclonal antiplatelet antibody. J Am Coll Cardiol. 1994 Apr;23(5):1031–1037. doi: 10.1016/0735-1097(94)90586-x. [DOI] [PubMed] [Google Scholar]
- De Bruyne B., Baudhuin T., Melin J. A., Pijls N. H., Sys S. U., Bol A., Paulus W. J., Heyndrickx G. R., Wijns W. Coronary flow reserve calculated from pressure measurements in humans. Validation with positron emission tomography. Circulation. 1994 Mar;89(3):1013–1022. doi: 10.1161/01.cir.89.3.1013. [DOI] [PubMed] [Google Scholar]
- De Bruyne B., Pijls N. H., Paulus W. J., Vantrimpont P. J., Sys S. U., Heyndrickx G. R. Transstenotic coronary pressure gradient measurement in humans: in vitro and in vivo evaluation of a new pressure monitoring angioplasty guide wire. J Am Coll Cardiol. 1993 Jul;22(1):119–126. doi: 10.1016/0735-1097(93)90825-l. [DOI] [PubMed] [Google Scholar]
- De Bruyne B., Sys S. U., Heyndrickx G. R. Percutaneous transluminal coronary angioplasty catheters versus fluid-filled pressure monitoring guidewires for coronary pressure measurements and correlation with quantitative coronary angiography. Am J Cardiol. 1993 Nov 15;72(15):1101–1106. doi: 10.1016/0002-9149(93)90976-j. [DOI] [PubMed] [Google Scholar]
- Di Mario C., Haase J., den Boer A., Reiber J. H., Serruys P. W. Edge detection versus densitometry in the quantitative assessment of stenosis phantoms: an in vivo comparison in porcine coronary arteries. Am Heart J. 1992 Nov;124(5):1181–1189. doi: 10.1016/0002-8703(92)90398-f. [DOI] [PubMed] [Google Scholar]
- Di Mario C., Krams R., Gil R., Serruys P. W. Slope of the instantaneous hyperemic diastolic coronary flow velocity-pressure relation. A new index for assessment of the physiological significance of coronary stenosis in humans. Circulation. 1994 Sep;90(3):1215–1224. doi: 10.1161/01.cir.90.3.1215. [DOI] [PubMed] [Google Scholar]
- Di Mario C., Roelandt J. R., de Jaegere P., Linker D. T., Oomen J., Serruys P. W. Limitations of the zero crossing detector in the analysis of intracoronary Doppler: a comparison with fast Fourier transform analysis of basal, hyperemic, and transstenotic blood flow velocity measurements in patients with coronary artery disease. Cathet Cardiovasc Diagn. 1993 Jan;28(1):56–64. doi: 10.1002/ccd.1810280112. [DOI] [PubMed] [Google Scholar]
- Di Mario C., de Feyter P. J., Slager C. J., de Jaegere P., Roelandt J. R., Serruys P. W. Intracoronary blood flow velocity and transstenotic pressure gradient using sensor-tip pressure and Doppler guidewires: a new technology for the assessment of stenosis severity in the catheterization laboratory. Cathet Cardiovasc Diagn. 1993 Apr;28(4):311–319. doi: 10.1002/ccd.1810280408. [DOI] [PubMed] [Google Scholar]
- Donohue T. J., Kern M. J., Aguirre F. V., Bach R. G., Wolford T., Bell C. A., Segal J. Assessing the hemodynamic significance of coronary artery stenoses: analysis of translesional pressure-flow velocity relations in patients. J Am Coll Cardiol. 1993 Aug;22(2):449–458. doi: 10.1016/0735-1097(93)90049-7. [DOI] [PubMed] [Google Scholar]
- Doucette J. W., Corl P. D., Payne H. M., Flynn A. E., Goto M., Nassi M., Segal J. Validation of a Doppler guide wire for intravascular measurement of coronary artery flow velocity. Circulation. 1992 May;85(5):1899–1911. doi: 10.1161/01.cir.85.5.1899. [DOI] [PubMed] [Google Scholar]
- Folts J. D., Crowell E. B., Jr, Rowe G. G. Platelet aggregation in partially obstructed vessels and its elimination with aspirin. Circulation. 1976 Sep;54(3):365–370. doi: 10.1161/01.cir.54.3.365. [DOI] [PubMed] [Google Scholar]
- Folts J. D., Gallagher K., Rowe G. G. Blood flow reductions in stenosed canine coronary arteries: vasospasm or platelet aggregation? Circulation. 1982 Feb;65(2):248–255. doi: 10.1161/01.cir.65.2.248. [DOI] [PubMed] [Google Scholar]
- GREGG D. E., SABISTON D. C., Jr Effect of cardiac contraction on coronary blood flow. Circulation. 1957 Jan;15(1):14–20. doi: 10.1161/01.cir.15.1.14. [DOI] [PubMed] [Google Scholar]
- Goto M., Flynn A. E., Doucette J. W., Kimura A., Hiramatsu O., Yamamoto T., Ogasawara Y., Tsujioka K., Hoffman J. I., Kajiya F. Effect of intracoronary nitroglycerin administration on phasic pattern and transmural distribution of flow during coronary artery stenosis. Circulation. 1992 Jun;85(6):2296–2304. doi: 10.1161/01.cir.85.6.2296. [DOI] [PubMed] [Google Scholar]
- Gould K. L., Lipscomb K., Hamilton G. W. Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol. 1974 Jan;33(1):87–94. doi: 10.1016/0002-9149(74)90743-7. [DOI] [PubMed] [Google Scholar]
- Grüntzig A. R., Senning A., Siegenthaler W. E. Nonoperative dilatation of coronary-artery stenosis: percutaneous transluminal coronary angioplasty. N Engl J Med. 1979 Jul 12;301(2):61–68. doi: 10.1056/NEJM197907123010201. [DOI] [PubMed] [Google Scholar]
- Haase J., Di Mario C., Slager C. J., van der Giessen W. J., den Boer A., de Feyter P. J., Reiber J. H., Verdouw P. D., Serruys P. W. In-vivo validation of on-line and off-line geometric coronary measurements using insertion of stenosis phantoms in porcine coronary arteries. Cathet Cardiovasc Diagn. 1992 Sep;27(1):16–27. doi: 10.1002/ccd.1810270106. [DOI] [PubMed] [Google Scholar]
- Kajiya F., Tsujioka K., Ogasawara Y., Wada Y., Matsuoka S., Kanazawa S., Hiramatsu O., Tadaoka S., Goto M., Fujiwara T. Analysis of flow characteristics in poststenotic regions of the human coronary artery during bypass graft surgery. Circulation. 1987 Nov;76(5):1092–1100. doi: 10.1161/01.cir.76.5.1092. [DOI] [PubMed] [Google Scholar]
- Kern M. J., Aguirre F. V., Donohue T. J., Bach R. G., Caracciolo E. A., Flynn M. S., Wolford T., Moore J. A. Continuous coronary flow velocity monitoring during coronary interventions: velocity trend patterns associated with adverse events. Am Heart J. 1994 Sep;128(3):426–434. doi: 10.1016/0002-8703(94)90613-0. [DOI] [PubMed] [Google Scholar]
- Kern M. J., Deligonul U., Vandormael M., Labovitz A., Gudipati C. V., Gabliani G., Bodet J., Shah Y., Kennedy H. L. Impaired coronary vasodilator reserve in the immediate postcoronary angioplasty period: analysis of coronary artery flow velocity indexes and regional cardiac venous efflux. J Am Coll Cardiol. 1989 Mar 15;13(4):860–872. doi: 10.1016/0735-1097(89)90229-5. [DOI] [PubMed] [Google Scholar]
- Kirkeeide R. L., Gould K. L., Parsel L. Assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilation. VII. Validation of coronary flow reserve as a single integrated functional measure of stenosis severity reflecting all its geometric dimensions. J Am Coll Cardiol. 1986 Jan;7(1):103–113. doi: 10.1016/s0735-1097(86)80266-2. [DOI] [PubMed] [Google Scholar]
- Krams R., Sipkema P., Westerhof N. Varying elastance concept may explain coronary systolic flow impediment. Am J Physiol. 1989 Nov;257(5 Pt 2):H1471–H1479. doi: 10.1152/ajpheart.1989.257.5.H1471. [DOI] [PubMed] [Google Scholar]
- Krams R., Sipkema P., Zegers J., Westerhof N. Contractility is the main determinant of coronary systolic flow impediment. Am J Physiol. 1989 Dec;257(6 Pt 2):H1936–H1944. doi: 10.1152/ajpheart.1989.257.6.H1936. [DOI] [PubMed] [Google Scholar]
- Labovitz A. J., Anthonis D. M., Cravens T. L., Kern M. J. Validation of volumetric flow measurements by means of a Doppler-tipped coronary angioplasty guide wire. Am Heart J. 1993 Dec;126(6):1456–1461. doi: 10.1016/0002-8703(93)90545-k. [DOI] [PubMed] [Google Scholar]
- Mancini G. B., Cleary R. M., DeBoe S. F., Moore N. B., Gallagher K. P. Instantaneous hyperemic flow-versus-pressure slope index. Microsphere validation of an alternative to measures of coronary reserve. Circulation. 1991 Aug;84(2):862–870. doi: 10.1161/01.cir.84.2.862. [DOI] [PubMed] [Google Scholar]
- Mancini G. B., McGillem M. J., DeBoe S. F., Gallagher K. P. The diastolic hyperemic flow versus pressure relation. A new index of coronary stenosis severity and flow reserve. Circulation. 1989 Oct;80(4):941–950. doi: 10.1161/01.cir.80.4.941. [DOI] [PubMed] [Google Scholar]
- Marcus M. L., Wilson R. F., White C. W. Methods of measurement of myocardial blood flow in patients: a critical review. Circulation. 1987 Aug;76(2):245–253. doi: 10.1161/01.cir.76.2.245. [DOI] [PubMed] [Google Scholar]
- McGinn A. L., White C. W., Wilson R. F. Interstudy variability of coronary flow reserve. Influence of heart rate, arterial pressure, and ventricular preload. Circulation. 1990 Apr;81(4):1319–1330. doi: 10.1161/01.cir.81.4.1319. [DOI] [PubMed] [Google Scholar]
- Miller D. D., Donohue T. J., Younis L. T., Bach R. G., Aguirre F. V., Wittry M. D., Goodgold H. M., Chaitman B. R., Kern M. J. Correlation of pharmacological 99mTc-sestamibi myocardial perfusion imaging with poststenotic coronary flow reserve in patients with angiographically intermediate coronary artery stenoses. Circulation. 1994 May;89(5):2150–2160. doi: 10.1161/01.cir.89.5.2150. [DOI] [PubMed] [Google Scholar]
- Ofili E. O., Kern M. J., Labovitz A. J., St Vrain J. A., Segal J., Aguirre F. V., Castello R. Analysis of coronary blood flow velocity dynamics in angiographically normal and stenosed arteries before and after endolumen enlargement by angioplasty. J Am Coll Cardiol. 1993 Feb;21(2):308–316. doi: 10.1016/0735-1097(93)90668-q. [DOI] [PubMed] [Google Scholar]
- Pijls N. H., van Son J. A., Kirkeeide R. L., De Bruyne B., Gould K. L. Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty. Circulation. 1993 Apr;87(4):1354–1367. doi: 10.1161/01.cir.87.4.1354. [DOI] [PubMed] [Google Scholar]
- Rossen J. D., Winniford M. D. Effect of increases in heart rate and arterial pressure on coronary flow reserve in humans. J Am Coll Cardiol. 1993 Feb;21(2):343–348. doi: 10.1016/0735-1097(93)90673-o. [DOI] [PubMed] [Google Scholar]
- Segal J., Kern M. J., Scott N. A., King S. B., 3rd, Doucette J. W., Heuser R. R., Ofili E., Siegel R. Alterations of phasic coronary artery flow velocity in humans during percutaneous coronary angioplasty. J Am Coll Cardiol. 1992 Aug;20(2):276–286. doi: 10.1016/0735-1097(92)90091-z. [DOI] [PubMed] [Google Scholar]
- Serruys P. W., Juillière Y., Zijlstra F., Beatt K. J., De Feyter P. J., Suryapranata H., Van Den Brand M., Roelandt J. Coronary blood flow velocity during percutaneous transluminal coronary angioplasty as a guide for assessment of the functional result. Am J Cardiol. 1988 Feb 1;61(4):253–259. doi: 10.1016/0002-9149(88)90926-5. [DOI] [PubMed] [Google Scholar]
- Serruys P. W., Wijns W., Reiber J. H., de Feyter P., van den Brand M., Piscione F., Hugenholtz P. G. Values and limitations of transstenotic pressure gradients measured during percutaneous coronary angioplasty. Herz. 1985 Dec;10(6):337–342. [PubMed] [Google Scholar]
- Spaan J. A., Breuls N. P., Laird J. D. Diastolic-systolic coronary flow differences are caused by intramyocardial pump action in the anesthetized dog. Circ Res. 1981 Sep;49(3):584–593. doi: 10.1161/01.res.49.3.584. [DOI] [PubMed] [Google Scholar]
- Wilson R. F., Johnson M. R., Marcus M. L., Aylward P. E., Skorton D. J., Collins S., White C. W. The effect of coronary angioplasty on coronary flow reserve. Circulation. 1988 Apr;77(4):873–885. doi: 10.1161/01.cir.77.4.873. [DOI] [PubMed] [Google Scholar]
- Wilson R. F., Marcus M. L., White C. W. Prediction of the physiologic significance of coronary arterial lesions by quantitative lesion geometry in patients with limited coronary artery disease. Circulation. 1987 Apr;75(4):723–732. doi: 10.1161/01.cir.75.4.723. [DOI] [PubMed] [Google Scholar]
- Young D. F., Cholvin N. R., Roth A. C. Pressure drop across artificially induced stenoses in the femoral arteries of dogs. Circ Res. 1975 Jun;36(6):735–743. doi: 10.1161/01.res.36.6.735. [DOI] [PubMed] [Google Scholar]
- Zijlstra F., van Ommeren J., Reiber J. H., Serruys P. W. Does the quantitative assessment of coronary artery dimensions predict the physiologic significance of a coronary stenosis? Circulation. 1987 Jun;75(6):1154–1161. doi: 10.1161/01.cir.75.6.1154. [DOI] [PubMed] [Google Scholar]



