Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 Feb 15;89(4):1184–1188. doi: 10.1073/pnas.89.4.1184

Structure of clonal and polyclonal cell arrays in chimeric mouse retina.

R W Williams 1, D Goldowitz 1
PMCID: PMC48413  PMID: 1741373

Abstract

One of the most striking results of recent cell-lineage studies of vertebrate retina is the marked variability in the size and types of clones marked by retroviral transfection and dye injection of embryonic progenitor cells. Is this variability due to microenvironmental modulation of cell determination, to lineage restriction, or to experimental perturbation of the progenitor cells? We have taken advantage of species-specific DNA probes to mark groups of lineage-related cells in experimental mouse chimeras. This method of marking cells has two distinct advantages over previous methods: direct manipulation of progenitor cells is avoided, and clones are established at an earlier stage of retinal development. The most notable feature of retinal cohorts in chimeras is their structural uniformity--each is a solid radial array that contains the same ratio of major cell types as the retina itself. This is true even of the smallest monoclonal cohorts, which contain fewer than 200 cells. Our results provides compelling empirical support for the hypothesis that the murine retina is made up of hundreds of relatively homogeneous radial units, each derived from single retinal precursor cells. This finding is inconsistent with micro-environmental modulation of clone structure early in development. We raise the possibility that the heterogeneity among clones marked by dye injection and transfection is due to progressive lineage restriction or to experimental perturbation of the retinal progenitor cells.

Full text

PDF
1184

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Covarrubias L., Nishida Y., Terao M., D'Eustachio P., Mintz B. Cellular DNA rearrangements and early developmental arrest caused by DNA insertion in transgenic mouse embryos. Mol Cell Biol. 1987 Jun;7(6):2243–2247. doi: 10.1128/mcb.7.6.2243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Doe C. Q., Goodman C. S. Early events in insect neurogenesis. II. The role of cell interactions and cell lineage in the determination of neuronal precursor cells. Dev Biol. 1985 Sep;111(1):206–219. doi: 10.1016/0012-1606(85)90446-4. [DOI] [PubMed] [Google Scholar]
  3. Goldowitz D. Cell allocation in mammalian CNS formation: evidence from murine interspecies aggregation chimeras. Neuron. 1989 Dec;3(6):705–713. doi: 10.1016/0896-6273(89)90239-0. [DOI] [PubMed] [Google Scholar]
  4. Goldowitz D., Mullen R. J. Granule cell as a site of gene action in the weaver mouse cerebellum: evidence from heterozygous mutant chimeras. J Neurosci. 1982 Oct;2(10):1474–1485. doi: 10.1523/JNEUROSCI.02-10-01474.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Holt C. E., Bertsch T. W., Ellis H. M., Harris W. A. Cellular determination in the Xenopus retina is independent of lineage and birth date. Neuron. 1988 Mar;1(1):15–26. doi: 10.1016/0896-6273(88)90205-x. [DOI] [PubMed] [Google Scholar]
  6. Jähner D., Stuhlmann H., Stewart C. L., Harbers K., Löhler J., Simon I., Jaenisch R. De novo methylation and expression of retroviral genomes during mouse embryogenesis. Nature. 1982 Aug 12;298(5875):623–628. doi: 10.1038/298623a0. [DOI] [PubMed] [Google Scholar]
  7. Miller D. S., Lau Y. T., Horowitz S. B. Artifacts caused by cell microinjection. Proc Natl Acad Sci U S A. 1984 Mar;81(5):1426–1430. doi: 10.1073/pnas.81.5.1426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Rakic P. Specification of cerebral cortical areas. Science. 1988 Jul 8;241(4862):170–176. doi: 10.1126/science.3291116. [DOI] [PubMed] [Google Scholar]
  9. Rossant J. Manipulating the mouse genome: implications for neurobiology. Neuron. 1990 Mar;4(3):323–334. doi: 10.1016/0896-6273(90)90045-h. [DOI] [PubMed] [Google Scholar]
  10. Rossant J., Vijh M., Siracusa L. D., Chapman V. M. Identification of embryonic cell lineages in histological sections of M. musculus in-equilibrium M. caroli chimaeras. J Embryol Exp Morphol. 1983 Feb;73:179–191. [PubMed] [Google Scholar]
  11. Sanyal S., Zeilmaker G. H. Cell lineage in retinal development of mice studied in experimental chimaeras. Nature. 1977 Feb 24;265(5596):731–733. doi: 10.1038/265731a0. [DOI] [PubMed] [Google Scholar]
  12. Schmidt G. H., Wilkinson M. M., Ponder B. A. Non-random spatial arrangement of clone sizes in chimaeric retinal pigment epithelium. J Embryol Exp Morphol. 1986 Feb;91:197–208. [PubMed] [Google Scholar]
  13. Siracusa L. D., Chapman V. M., Bennett K. L., Hastie N. D., Pietras D. F., Rossant J. Use of repetitive DNA sequences to distinguish Mus musculus and Mus caroli cells by in situ hybridization. J Embryol Exp Morphol. 1983 Feb;73:163–178. [PubMed] [Google Scholar]
  14. Stent G. S., Weisblat D. A. Cell lineage in the development of invertebrate nervous systems. Annu Rev Neurosci. 1985;8:45–70. doi: 10.1146/annurev.ne.08.030185.000401. [DOI] [PubMed] [Google Scholar]
  15. Turner D. L., Cepko C. L. A common progenitor for neurons and glia persists in rat retina late in development. Nature. 1987 Jul 9;328(6126):131–136. doi: 10.1038/328131a0. [DOI] [PubMed] [Google Scholar]
  16. Turner D. L., Snyder E. Y., Cepko C. L. Lineage-independent determination of cell type in the embryonic mouse retina. Neuron. 1990 Jun;4(6):833–845. doi: 10.1016/0896-6273(90)90136-4. [DOI] [PubMed] [Google Scholar]
  17. Watanabe T., Raff M. C. Retinal astrocytes are immigrants from the optic nerve. Nature. 1988 Apr 28;332(6167):834–837. doi: 10.1038/332834a0. [DOI] [PubMed] [Google Scholar]
  18. Watanabe T., Raff M. C. Rod photoreceptor development in vitro: intrinsic properties of proliferating neuroepithelial cells change as development proceeds in the rat retina. Neuron. 1990 Mar;4(3):461–467. doi: 10.1016/0896-6273(90)90058-n. [DOI] [PubMed] [Google Scholar]
  19. West J. D. A theoretical approach to the relation between patch size and clone size in chimaeric tissue. J Theor Biol. 1975 Mar;50(1):153–160. doi: 10.1016/0022-5193(75)90029-6. [DOI] [PubMed] [Google Scholar]
  20. Wetts R., Fraser S. E. Multipotent precursors can give rise to all major cell types of the frog retina. Science. 1988 Mar 4;239(4844):1142–1145. doi: 10.1126/science.2449732. [DOI] [PubMed] [Google Scholar]
  21. Wikler K. C., Rakic P. Relation of an array of early-differentiating cones to the photoreceptor mosaic in the primate retina. Nature. 1991 May 30;351(6325):397–400. doi: 10.1038/351397a0. [DOI] [PubMed] [Google Scholar]
  22. Wässle H., Riemann H. J. The mosaic of nerve cells in the mammalian retina. Proc R Soc Lond B Biol Sci. 1978 Mar 22;200(1141):441–461. doi: 10.1098/rspb.1978.0026. [DOI] [PubMed] [Google Scholar]
  23. Young R. W. Cell differentiation in the retina of the mouse. Anat Rec. 1985 Jun;212(2):199–205. doi: 10.1002/ar.1092120215. [DOI] [PubMed] [Google Scholar]
  24. Yuodelis C., Hendrickson A. A qualitative and quantitative analysis of the human fovea during development. Vision Res. 1986;26(6):847–855. doi: 10.1016/0042-6989(86)90143-4. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES