Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 Feb 15;89(4):1214–1218. doi: 10.1073/pnas.89.4.1214

Solid-liquid phase boundaries of lens protein solutions.

C R Berland 1, G M Thurston 1, M Kondo 1, M L Broide 1, J Pande 1, O Ogun 1, G B Benedek 1
PMCID: PMC48419  PMID: 1741375

Abstract

We report measurement of the solid-liquid phase boundary, or liquidus line, for aqueous solutions of three pure calf gamma-crystallin proteins: gamma II, gamma IIIa, and gamma IIIb. We also studied the liquidus line for solutions of native gamma IV-crystallin calf lens protein, which consists of 85% gamma IVa/15% gamma IVb. In all four proteins the liquidus phase boundaries lie higher in temperature than the previously determined liquid-liquid coexistence curves. Thus, over the range of concentration and temperature for which liquid-liquid phase separation occurs, the coexistence of a protein crystal phase with a protein liquid solution phase is thermodynamically stable relative to the metastable separated liquid phases. The location of the liquidus lines clearly divides these four crystallin proteins into two groups: those in which liquidus lines flatten at temperatures greater than 70 degrees C: gamma IIIa and gamma IV, and those in which liquidus lines flatten at temperatures less than 50 degrees C: gamma II and gamma IIIb. We have analyzed the form of the liquidus lines by using specific choices for the structures of the Gibbs free energy in solution and solid phases. By applying the thermodynamic conditions for equilibrium between the two phases to the resulting chemical potentials, we can estimate the temperature-dependent free energy change upon binding of protein and water into the solid phase.

Full text

PDF
1214

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Broide M. L., Berland C. R., Pande J., Ogun O. O., Benedek G. B. Binary-liquid phase separation of lens protein solutions. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5660–5664. doi: 10.1073/pnas.88.13.5660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Delaye M., Tardieu A. Short-range order of crystallin proteins accounts for eye lens transparency. 1983 Mar 31-Apr 6Nature. 302(5907):415–417. doi: 10.1038/302415a0. [DOI] [PubMed] [Google Scholar]
  3. Eaton W. A., Hofrichter J. Sickle cell hemoglobin polymerization. Adv Protein Chem. 1990;40:63–279. doi: 10.1016/s0065-3233(08)60287-9. [DOI] [PubMed] [Google Scholar]
  4. Feher G., Kam Z. Nucleation and growth of protein crystals: general principles and assays. Methods Enzymol. 1985;114:77–112. doi: 10.1016/0076-6879(85)14006-1. [DOI] [PubMed] [Google Scholar]
  5. Frauenfelder H., Hartmann H., Karplus M., Kuntz I. D., Jr, Kuriyan J., Parak F., Petsko G. A., Ringe D., Tilton R. F., Jr, Connolly M. L. Thermal expansion of a protein. Biochemistry. 1987 Jan 13;26(1):254–261. doi: 10.1021/bi00375a035. [DOI] [PubMed] [Google Scholar]
  6. Kam Z., Shore H. B., Feher G. On the crystallization of proteins. J Mol Biol. 1978 Aug 25;123(4):539–555. doi: 10.1016/0022-2836(78)90206-1. [DOI] [PubMed] [Google Scholar]
  7. Phillies GD. Comment on "Critical behavior of a binary mixture of protein and salt water". Phys Rev Lett. 1985 Sep 16;55(12):1341–1341. doi: 10.1103/PhysRevLett.55.1341. [DOI] [PubMed] [Google Scholar]
  8. Prouty M. S., Schechter A. N., Parsegian V. A. Chemical potential measurements of deoxyhemoglobin S polymerization. Determination of the phase diagram of an assembling protein. J Mol Biol. 1985 Aug 5;184(3):517–528. doi: 10.1016/0022-2836(85)90298-0. [DOI] [PubMed] [Google Scholar]
  9. Ross P. D., Hofrichter J., Eaton W. A. Thermodynamics of gelation of sickle cell deoxyhemoglobin. J Mol Biol. 1977 Sep 15;115(2):111–134. doi: 10.1016/0022-2836(77)90093-6. [DOI] [PubMed] [Google Scholar]
  10. Schurtenberger P, Chamberlin RA, Thurston GM, Thomson JA, Benedek GB. Observation of critical phenomena in a protein-water solution. Phys Rev Lett. 1989 Nov 6;63(19):2064–2067. doi: 10.1103/PhysRevLett.63.2064. [DOI] [PubMed] [Google Scholar]
  11. Sergeev Y. V., Chirgadze Y. N., Mylvaganam S. E., Driessen H., Slingsby C., Blundell T. L. Surface interactions of gamma-crystallins in the crystal medium in relation to their association in the eye lens. Proteins. 1988;4(2):137–147. doi: 10.1002/prot.340040207. [DOI] [PubMed] [Google Scholar]
  12. Summers L. J., Slingsby C., Blundell T. L., den Dunnen J. T., Moormann R. J., Schoenmakers J. G. Structural variation in mammalian gamma-crystallins based on computer graphics analyses of human, rat and calf sequences. 1. Core packing and surface properties. Exp Eye Res. 1986 Jul;43(1):77–92. doi: 10.1016/s0014-4835(86)80047-1. [DOI] [PubMed] [Google Scholar]
  13. Thomson J. A., Schurtenberger P., Thurston G. M., Benedek G. B. Binary liquid phase separation and critical phenomena in a protein/water solution. Proc Natl Acad Sci U S A. 1987 Oct;84(20):7079–7083. doi: 10.1073/pnas.84.20.7079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. White H. E., Driessen H. P., Slingsby C., Moss D. S., Lindley P. F. Packing interactions in the eye-lens. Structural analysis, internal symmetry and lattice interactions of bovine gamma IVa-crystallin. J Mol Biol. 1989 May 5;207(1):217–235. doi: 10.1016/0022-2836(89)90452-x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES