Abstract
OBJECTIVE: To assess energy depletion in skeletal muscle in patients with congestive heart failure by measuring blood purine metabolites during exercise and, at the same time, determine the implications of the ammonia response to exercise in these patients. SETTING: Tottori University Hospital, Yonago, Japan. PATIENTS: 49 heart failure patients (New York Heart Association (NYHA) grades I-III) and 16 normal subjects. MAIN OUTCOME MEASURES: Blood lactate, ammonia, and hypoxanthine levels were measured during exercise with expired gas analysis. RESULTS: In normal exercising subjects as well as in each heart failure subgroup, the ammonia threshold was significantly higher than both the lactate threshold [control: 21.8 (SD 5.3) v 17.4 (3.3) ml/kg/min; NYHA class I: 18.9 (3.8) v 15.5 (2.6); class II: 14.8 (2.5) v 12.7 (2.4); class III: 13.5 (2.6) v 11.8 (2.5)] and the ventilatory threshold (P < 0.01). The difference between the ammonia and lactate thresholds was noted in all normal subjects and in all heart failure patients. The ammonia threshold, however, was significantly lower in heart failure patients than in normal subjects and it decreased with increasing NYHA class (P < 0.01). Maximum ammonia levels were lower in the heart failure group and decreased further with higher NYHA classifications [control: 198 (52) mg/dl; NYHA class I: 170 (74); class II: 134 (58); class III: 72 (15); P < 0.01]. There were significant correlations between maximum ammonia values and maximum lactate, oxygen consumption, and hypoxanthine levels (r = 0.74, 0.48, and 0.87, respectively; P < 0.001). CONCLUSIONS: The ammonia threshold may reflect the onset of ATP depletion in exercising skeletal muscles, as opposed to the onset of anaerobic respiration. It seems therefore that energy depletion in skeletal muscles during exercise occurs after attaining the anaerobic threshold. Both aerobic and anaerobic capacities of skeletal muscle are reduced in patients with congestive heart failure.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beaver W. L., Wasserman K., Whipp B. J. A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol (1985) 1986 Jun;60(6):2020–2027. doi: 10.1152/jappl.1986.60.6.2020. [DOI] [PubMed] [Google Scholar]
- Beaver W. L., Wasserman K., Whipp B. J. Improved detection of lactate threshold during exercise using a log-log transformation. J Appl Physiol (1985) 1985 Dec;59(6):1936–1940. doi: 10.1152/jappl.1985.59.6.1936. [DOI] [PubMed] [Google Scholar]
- Borg G. A. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377–381. [PubMed] [Google Scholar]
- Broberg S., Sahlin K. Adenine nucleotide degradation in human skeletal muscle during prolonged exercise. J Appl Physiol (1985) 1989 Jul;67(1):116–122. doi: 10.1152/jappl.1989.67.1.116. [DOI] [PubMed] [Google Scholar]
- Dickstein K., Barvik S., Aarsland T., Snapinn S., Millerhagen J. Validation of a computerized technique for detection of the gas exchange anaerobic threshold in cardiac disease. Am J Cardiol. 1990 Dec 1;66(19):1363–1367. doi: 10.1016/0002-9149(90)91169-7. [DOI] [PubMed] [Google Scholar]
- Drexler H., Riede U., Münzel T., König H., Funke E., Just H. Alterations of skeletal muscle in chronic heart failure. Circulation. 1992 May;85(5):1751–1759. doi: 10.1161/01.cir.85.5.1751. [DOI] [PubMed] [Google Scholar]
- Fox I. H., Palella T. D., Kelley W. N. Hyperuricemia: a marker for cell energy crisis. N Engl J Med. 1987 Jul 9;317(2):111–112. doi: 10.1056/NEJM198707093170209. [DOI] [PubMed] [Google Scholar]
- Graham T. E., MacLean D. A. Ammonia and amino acid metabolism in human skeletal muscle during exercise. Can J Physiol Pharmacol. 1992 Jan;70(1):132–141. doi: 10.1139/y92-020. [DOI] [PubMed] [Google Scholar]
- Harris R. C., Marlin D. J., Snow D. H., Harkness R. A. Muscle ATP loss and lactate accumulation at different work intensities in the exercising Thoroughbred horse. Eur J Appl Physiol Occup Physiol. 1991;62(4):235–244. doi: 10.1007/BF00571546. [DOI] [PubMed] [Google Scholar]
- Itoh H., Ohkuwa T. Ammonia and lactate in the blood after short-term sprint exercise. Eur J Appl Physiol Occup Physiol. 1991;62(1):22–25. doi: 10.1007/BF00635628. [DOI] [PubMed] [Google Scholar]
- JACQUEZ J. A., POPPELL J. W., JELTSCH R. Partial pressure of ammonia in alveolar air. Science. 1959 Jan 30;129(3344):269–270. doi: 10.1126/science.129.3344.269. [DOI] [PubMed] [Google Scholar]
- Katz A., Broberg S., Sahlin K., Wahren J. Muscle ammonia and amino acid metabolism during dynamic exercise in man. Clin Physiol. 1986 Aug;6(4):365–379. doi: 10.1111/j.1475-097x.1986.tb00242.x. [DOI] [PubMed] [Google Scholar]
- Katz A., Sahlin K., Henriksson J. Muscle ammonia metabolism during isometric contraction in humans. Am J Physiol. 1986 Jun;250(6 Pt 1):C834–C840. doi: 10.1152/ajpcell.1986.250.6.C834. [DOI] [PubMed] [Google Scholar]
- Ketai L. H., Simon R. H., Kreit J. W., Grum C. M. Plasma hypoxanthine and exercise. Am Rev Respir Dis. 1987 Jul;136(1):98–101. doi: 10.1164/ajrccm/136.1.98. [DOI] [PubMed] [Google Scholar]
- Lowenstein J., Tornheim K. Ammonia production in muscle: the purine nucleotide cycle. Science. 1971 Jan 29;171(3969):397–400. doi: 10.1126/science.171.3969.397. [DOI] [PubMed] [Google Scholar]
- Massie B. M., Conway M., Rajagopalan B., Yonge R., Frostick S., Ledingham J., Sleight P., Radda G. Skeletal muscle metabolism during exercise under ischemic conditions in congestive heart failure. Evidence for abnormalities unrelated to blood flow. Circulation. 1988 Aug;78(2):320–326. doi: 10.1161/01.cir.78.2.320. [DOI] [PubMed] [Google Scholar]
- Matsumura N., Nishijima H., Kojima S., Hashimoto F., Minami M., Yasuda H. Determination of anaerobic threshold for assessment of functional state in patients with chronic heart failure. Circulation. 1983 Aug;68(2):360–367. doi: 10.1161/01.cir.68.2.360. [DOI] [PubMed] [Google Scholar]
- Meyer R. A., Dudley G. A., Terjung R. L. Ammonia and IMP in different skeletal muscle fibers after exercise in rats. J Appl Physiol Respir Environ Exerc Physiol. 1980 Dec;49(6):1037–1041. doi: 10.1152/jappl.1980.49.6.1037. [DOI] [PubMed] [Google Scholar]
- Mineo I., Kono N., Hara N., Shimizu T., Yamada Y., Kawachi M., Kiyokawa H., Wang Y. L., Tarui S. Myogenic hyperuricemia. A common pathophysiologic feature of glycogenosis types III, V, and VII. N Engl J Med. 1987 Jul 9;317(2):75–80. doi: 10.1056/NEJM198707093170203. [DOI] [PubMed] [Google Scholar]
- Norman B., Sollevi A., Kaijser L., Jansson E. ATP breakdown products in human skeletal muscle during prolonged exercise to exhaustion. Clin Physiol. 1987 Dec;7(6):503–510. doi: 10.1111/j.1475-097x.1987.tb00192.x. [DOI] [PubMed] [Google Scholar]
- Patterson V. H., Kaiser K. K., Brooke M. H. Exercising muscle does not produce hypoxanthine in adenylate deaminase deficiency. Neurology. 1983 Jun;33(6):784–786. doi: 10.1212/wnl.33.6.784. [DOI] [PubMed] [Google Scholar]
- Patterson V. H., Kaiser K. K., Brooke M. H. Forearm exercise increases plasma hypoxanthine. J Neurol Neurosurg Psychiatry. 1982 Jun;45(6):552–553. doi: 10.1136/jnnp.45.6.552. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rexroth W., Hageloch W., Isgro F., Koeth T., Manzl G., Weicker H. Influence of peripheral arterial occlusive disease on muscular metabolism. Part 1: Changes in lactate, ammonia, and hypoxanthine concentration in femoral blood. Klin Wochenschr. 1989 Jun 1;67(11):576–582. doi: 10.1007/BF01721684. [DOI] [PubMed] [Google Scholar]
- Roos A., Boron W. F. Intracellular pH. Physiol Rev. 1981 Apr;61(2):296–434. doi: 10.1152/physrev.1981.61.2.296. [DOI] [PubMed] [Google Scholar]
- Sabina R. L., Swain J. L., Patten B. M., Ashizawa T., O'Brien W. E., Holmes E. W. Disruption of the purine nucleotide cycle. A potential explanation for muscle dysfunction in myoadenylate deaminase deficiency. J Clin Invest. 1980 Dec;66(6):1419–1423. doi: 10.1172/JCI109995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sahlin K., Edström L., Sjöholm H., Hultman E. Effects of lactic acid accumulation and ATP decrease on muscle tension and relaxation. Am J Physiol. 1981 Mar;240(3):C121–C126. doi: 10.1152/ajpcell.1981.240.3.C121. [DOI] [PubMed] [Google Scholar]
- Schlicht W., Naretz W., Witt D., Rieckert H. Ammonia and lactate: differential information on monitoring training load in sprint events. Int J Sports Med. 1990 May;11 (Suppl 2):S85–S90. doi: 10.1055/s-2007-1024859. [DOI] [PubMed] [Google Scholar]
- Sue D. Y., Wasserman K., Moricca R. B., Casaburi R. Metabolic acidosis during exercise in patients with chronic obstructive pulmonary disease. Use of the V-slope method for anaerobic threshold determination. Chest. 1988 Nov;94(5):931–938. doi: 10.1378/chest.94.5.931. [DOI] [PubMed] [Google Scholar]
- Sullivan M. J., Green H. J., Cobb F. R. Altered skeletal muscle metabolic response to exercise in chronic heart failure. Relation to skeletal muscle aerobic enzyme activity. Circulation. 1991 Oct;84(4):1597–1607. doi: 10.1161/01.cir.84.4.1597. [DOI] [PubMed] [Google Scholar]
- Urhausen A., Kindermann W. Blood ammonia and lactate concentrations during endurance exercise of differing intensities. Eur J Appl Physiol Occup Physiol. 1992;65(3):209–214. doi: 10.1007/BF00705083. [DOI] [PubMed] [Google Scholar]
- Wasserman K., Whipp B. J., Koyl S. N., Beaver W. L. Anaerobic threshold and respiratory gas exchange during exercise. J Appl Physiol. 1973 Aug;35(2):236–243. doi: 10.1152/jappl.1973.35.2.236. [DOI] [PubMed] [Google Scholar]
- Wilson J. R., Mancini D. M., Dunkman W. B. Exertional fatigue due to skeletal muscle dysfunction in patients with heart failure. Circulation. 1993 Feb;87(2):470–475. doi: 10.1161/01.cir.87.2.470. [DOI] [PubMed] [Google Scholar]
- Yamanaka H., Kawagoe Y., Taniguchi A., Kaneko N., Kimata S., Hosoda S., Kamatani N., Kashiwazaki S. Accelerated purine nucleotide degradation by anaerobic but not by aerobic ergometer muscle exercise. Metabolism. 1992 Apr;41(4):364–369. doi: 10.1016/0026-0495(92)90069-m. [DOI] [PubMed] [Google Scholar]
- Yoshida T., Chida M., Ichioka M., Suda Y. Blood lactate parameters related to aerobic capacity and endurance performance. Eur J Appl Physiol Occup Physiol. 1987;56(1):7–11. doi: 10.1007/BF00696368. [DOI] [PubMed] [Google Scholar]
