Skip to main content
Heart logoLink to Heart
. 1996 Apr;75(4):352–357. doi: 10.1136/hrt.75.4.352

Effects of gradual volume loading on left ventricular diastolic function in dogs: implications for the optimisation of cardiac output.

J Fragata 1, J C Areias 1
PMCID: PMC484309  PMID: 8705760

Abstract

BACKGROUND: Volume loading is commonly used to adjust preload and optimise cardiac output. It is difficult to monitor preload at the bedside because filling affects ventricular diastolic function and consequently end diastolic pressure, which is the variable used to monitor preload. OBJECTIVE: To assess the effects of gradual volume loading on the different components of left ventricular diastolic function---filling velocities, relaxation, and chamber compliance---to identify how excessive loading produces diastolic dysfunction. METHODS AND RESULTS: Eight mongrel dogs, anaesthetised and mechanically ventilated with both the chest and the pericardium closed, were studied during basal conditions (B), during gradual volume loading with physiological saline---5 ml/kg (VL5), 10 ml/kg (VL10), and 15 ml/kg (VL15)---and during infusion of isosorbide dinitrate (10 g/kg/min) started after the VL15 load was achieved. Dogs were monitored haemodynamically and by transthoracic Doppler echocardiography to assess peak modal velocities of the E and A waves, E/A ratios, and the deceleration time of the E wave. M mode recordings of aligned mitral and aortic valve motion were also obtained to calculate the isovolumic relaxation time. Effects of volume loading on ventricular diastolic function seemed to occur in two phases. Small and moderate volume loads (VL5 and VL10) promoted early ventricular filling, increasing E wave velocities, improving the mean (SD) E/A ratio from 1.95 (0.3) (B) to 2.0 (0.27) (VL5) and 2.6 (0.3) (VL10) (P < 0.00005), prolonging the E wave deceleration time, and only slightly increasing ventricular diastolic pressures. These changes suggest an improvement in ventricular compliance. Extreme volume loads (VL15) produced an abrupt reduction in early ventricular filling, which was transfered to late in diastole, by decreasing E wave velocity, by increasing A wave velocity, and by decreasing E/A ratio from 2.6 (0.3) (VL10) to 0.8 (0.05) (VL15) (P < 0.00005). The E wave deceleration time was shortened and left ventricular diastolic pressures were much increased, all suggesting a deterioration in chamber compliance. All these restrictive changes were promptly reversed by the perfusion of isosorbide dinitrate. The isovolumic relaxation time steadily increased with volume loading. CONCLUSIONS: Small and moderate volume loads improved ventricular diastolic function by promoting early ventricular filling and increasing ventricular compliance. Extreme volume loads promptly induced a diastolic restrictive pattern, transferring filling to the second part of diastole (increasing dependence on atrial contraction) and reducing ventricular compliance. These changes in ventricular diastolic function were independent of simultaneously measured haemodynamic systolic performance and were promptly reversed by isosorbide dinitrate, which after extreme loading promoted early filling, myocardial relaxation, and improved chamber compliance.

Full text

PDF
352

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Appleton C. P., Hatle L. K., Popp R. L. Relation of transmitral flow velocity patterns to left ventricular diastolic function: new insights from a combined hemodynamic and Doppler echocardiographic study. J Am Coll Cardiol. 1988 Aug;12(2):426–440. doi: 10.1016/0735-1097(88)90416-0. [DOI] [PubMed] [Google Scholar]
  2. Appleton C. P. Influence of incremental changes in heart rate on mitral flow velocity: assessment in lightly sedated, conscious dogs. J Am Coll Cardiol. 1991 Jan;17(1):227–236. doi: 10.1016/0735-1097(91)90731-n. [DOI] [PubMed] [Google Scholar]
  3. Bessen M., Gardin J. M. Evaluation of left ventricular diastolic function. Cardiol Clin. 1990 May;8(2):315–332. [PubMed] [Google Scholar]
  4. Bianco J. A., Filiberti A. W., Baker S. P., King M. A., Nalivaika L. A., Leahey D., Doherty P. W., Alpert J. S. Ejection fraction and heart rate correlate with diastolic peak filling rate at rest and during exercise. Chest. 1985 Jul;88(1):107–113. doi: 10.1378/chest.88.1.107. [DOI] [PubMed] [Google Scholar]
  5. Breisblatt W. M., Stein K. L., Wolfe C. J., Follansbee W. P., Capozzi J., Armitage J. M., Hardesty R. L. Acute myocardial dysfunction and recovery: a common occurrence after coronary bypass surgery. J Am Coll Cardiol. 1990 May;15(6):1261–1269. doi: 10.1016/s0735-1097(10)80011-7. [DOI] [PubMed] [Google Scholar]
  6. Brutsaert D. L., Rademakers F. E., Sys S. U. Triple control of relaxation: implications in cardiac disease. Circulation. 1984 Jan;69(1):190–196. doi: 10.1161/01.cir.69.1.190. [DOI] [PubMed] [Google Scholar]
  7. Brutsaert D. L., Sys S. U. Relaxation and diastole of the heart. Physiol Rev. 1989 Oct;69(4):1228–1315. doi: 10.1152/physrev.1989.69.4.1228. [DOI] [PubMed] [Google Scholar]
  8. Burrows F. A., Williams W. G., Teoh K. H., Wood A. E., Burns J., Edmonds J., Barker G. A., Trusler G. A., Weisel R. D. Myocardial performance after repair of congenital cardiac defects in infants and children. Response to volume loading. J Thorac Cardiovasc Surg. 1988 Oct;96(4):548–556. [PubMed] [Google Scholar]
  9. Choong C. Y., Abascal V. M., Thomas J. D., Guerrero J. L., McGlew S., Weyman A. E. Combined influence of ventricular loading and relaxation on the transmitral flow velocity profile in dogs measured by Doppler echocardiography. Circulation. 1988 Sep;78(3):672–683. doi: 10.1161/01.cir.78.3.672. [DOI] [PubMed] [Google Scholar]
  10. Choong C. Y., Abascal V. M., Thomas J. D., Guerrero J. L., McGlew S., Weyman A. E. Combined influence of ventricular loading and relaxation on the transmitral flow velocity profile in dogs measured by Doppler echocardiography. Circulation. 1988 Sep;78(3):672–683. doi: 10.1161/01.cir.78.3.672. [DOI] [PubMed] [Google Scholar]
  11. Courtois M., Vered Z., Barzilai B., Ricciotti N. A., Pérez J. E., Ludbrook P. A. The transmitral pressure-flow velocity relation. Effect of abrupt preload reduction. Circulation. 1988 Dec;78(6):1459–1468. doi: 10.1161/01.cir.78.6.1459. [DOI] [PubMed] [Google Scholar]
  12. Daughters G. T., Derby G. C., Alderman E. L., Schwarzkopf A., Mead C. W., Ingels N. B., Jr, Miller D. C. Independence of left ventricular pressure-volume ratio from preload in man early after coronary artery bypass graft surgery. Circulation. 1985 May;71(5):945–950. doi: 10.1161/01.cir.71.5.945. [DOI] [PubMed] [Google Scholar]
  13. Freeman G. L., Little W. C., O'Rourke R. A. Influence of heart rate on left ventricular performance in conscious dogs. Circ Res. 1987 Sep;61(3):455–464. doi: 10.1161/01.res.61.3.455. [DOI] [PubMed] [Google Scholar]
  14. Gaasch W. H., Blaustein A. S., Andrias C. W., Donahue R. P., Avitall B. Myocardial relaxation. II. Hemodynamic determinants of rate of left ventricular isovolumic pressure decline. Am J Physiol. 1980 Jul;239(1):H1–H6. doi: 10.1152/ajpheart.1980.239.1.H1. [DOI] [PubMed] [Google Scholar]
  15. Gaasch W. H., Levine H. J., Quinones M. A., Alexander J. K. Left ventricular compliance: mechanisms and clinical implications. Am J Cardiol. 1976 Nov 4;38(5):645–653. doi: 10.1016/s0002-9149(76)80015-x. [DOI] [PubMed] [Google Scholar]
  16. Glantz S. A., Parmley W. W. Factors which affect the diastolic pressure-volume curve. Circ Res. 1978 Feb;42(2):171–180. doi: 10.1161/01.res.42.2.171. [DOI] [PubMed] [Google Scholar]
  17. Hargreaves A. D., Muir A. L. Haemodynamic responses to glyceryl trinitrate: influence of rate and duration of delivery. Eur Heart J. 1992 Jul;13(7):960–965. doi: 10.1093/oxfordjournals.eurheartj.a060300. [DOI] [PubMed] [Google Scholar]
  18. Harpole D. H., Jones R. H. Serial assessment of ventricular performance after valve replacement for aortic stenosis. J Thorac Cardiovasc Surg. 1990 Apr;99(4):645–650. [PubMed] [Google Scholar]
  19. Ishida Y., Meisner J. S., Tsujioka K., Gallo J. I., Yoran C., Frater R. W., Yellin E. L. Left ventricular filling dynamics: influence of left ventricular relaxation and left atrial pressure. Circulation. 1986 Jul;74(1):187–196. doi: 10.1161/01.cir.74.1.187. [DOI] [PubMed] [Google Scholar]
  20. Leite-Moreira A. F., Gillebert T. C. Nonuniform course of left ventricular pressure fall and its regulation by load and contractile state. Circulation. 1994 Nov;90(5):2481–2491. doi: 10.1161/01.cir.90.5.2481. [DOI] [PubMed] [Google Scholar]
  21. Lew W. Y. Evaluation of left ventricular diastolic function. Circulation. 1989 Jun;79(6):1393–1397. doi: 10.1161/01.cir.79.6.1393. [DOI] [PubMed] [Google Scholar]
  22. Louie E. K., Rich S., Levitsky S., Brundage B. H. Doppler echocardiographic demonstration of the differential effects of right ventricular pressure and volume overload on left ventricular geometry and filling. J Am Coll Cardiol. 1992 Jan;19(1):84–90. doi: 10.1016/0735-1097(92)90056-s. [DOI] [PubMed] [Google Scholar]
  23. Ludbrook P. A., Byrne J. D., McKnight R. C. Influence of right ventricular hemodynamics on left ventricular diastolic pressure-volume relations in man. Circulation. 1979 Jan;59(1):21–31. doi: 10.1161/01.cir.59.1.21. [DOI] [PubMed] [Google Scholar]
  24. Manders W. T., Vatner S. F. Effects of sodium pentobarbital anesthesia on left ventricular function and distribution of cardiac output in dogs, with particular reference to the mechanism for tachycardia. Circ Res. 1976 Oct;39(4):512–517. doi: 10.1161/01.res.39.4.512. [DOI] [PubMed] [Google Scholar]
  25. Mangano D. T., Van Dyke D. C., Ellis R. J. The effect of increasing preload on ventricular output and ejection in man. Limitations of the Frank-Starling Mechanism. Circulation. 1980 Sep;62(3):535–541. doi: 10.1161/01.cir.62.3.535. [DOI] [PubMed] [Google Scholar]
  26. Marmor A., Krakauer J., Schneeweiss A. Effects of a single dose of isosorbide-5-mononitrate on the left ventricular diastolic function in systemic hypertension. Am J Cardiol. 1989 May 15;63(17):1235–1239. doi: 10.1016/0002-9149(89)90185-9. [DOI] [PubMed] [Google Scholar]
  27. Nishimura R. A., Abel M. D., Hatle L. K., Holmes D. R., Jr, Housmans P. R., Ritman E. L., Tajik A. J. Significance of Doppler indices of diastolic filling of the left ventricle: comparison with invasive hemodynamics in a canine model. Am Heart J. 1989 Dec;118(6):1248–1258. doi: 10.1016/0002-8703(89)90017-3. [DOI] [PubMed] [Google Scholar]
  28. Nishimura R. A., Abel M. D., Hatle L. K., Tajik A. J. Assessment of diastolic function of the heart: background and current applications of Doppler echocardiography. Part II. Clinical studies. Mayo Clin Proc. 1989 Feb;64(2):181–204. doi: 10.1016/s0025-6196(12)65673-0. [DOI] [PubMed] [Google Scholar]
  29. Nishimura R. A., Abel M. D., Hatle L. K., Tajik A. J. Relation of pulmonary vein to mitral flow velocities by transesophageal Doppler echocardiography. Effect of different loading conditions. Circulation. 1990 May;81(5):1488–1497. doi: 10.1161/01.cir.81.5.1488. [DOI] [PubMed] [Google Scholar]
  30. Phillips H. R., Carter J. E., Okada R. D., Levine F. H., Boucher C. A., Osbakken M., Lappas D., Buckley M. J., Pohost G. M. Serial changes in left ventricular ejection fraction in the early hours after aortocoronary bypass grafting. Chest. 1983 Jan;83(1):28–34. doi: 10.1378/chest.83.1.28. [DOI] [PubMed] [Google Scholar]
  31. Raff G. L., Glantz S. A. Volume loading slows left ventricular isovolumic relaxation rate. Evidence of load-dependent relaxation in the intact dog heart. Circ Res. 1981 Jun;48(6 Pt 1):813–824. doi: 10.1161/01.res.48.6.813. [DOI] [PubMed] [Google Scholar]
  32. Spirito P., Maron B. J. Doppler echocardiography for assessing left ventricular diastolic function. Ann Intern Med. 1988 Jul 15;109(2):122–126. doi: 10.7326/0003-4819-109-2-122. [DOI] [PubMed] [Google Scholar]
  33. Stoddard M. F., Pearson A. C., Kern M. J., Ratcliff J., Mrosek D. G., Labovitz A. J. Left ventricular diastolic function: comparison of pulsed Doppler echocardiographic and hemodynamic indexes in subjects with and without coronary artery disease. J Am Coll Cardiol. 1989 Feb;13(2):327–336. doi: 10.1016/0735-1097(89)90507-x. [DOI] [PubMed] [Google Scholar]
  34. Tak T., Choudhary R. S., Chatterjee S., Widerhorn J., Rahimtoola S. H., Chandraratna P. A. Effect of loading conditions on Doppler-derived transmitral flow indices in normal subjects and patients with coronary artery disease. Echocardiography. 1992 Sep;9(5):467–474. doi: 10.1111/j.1540-8175.1992.tb00489.x. [DOI] [PubMed] [Google Scholar]
  35. Triulzi M. O., Castini D., Ornaghi M., Vitolo E. Effects of preload reduction on mitral flow velocity pattern in normal subjects. Am J Cardiol. 1990 Oct 15;66(12):995–1001. doi: 10.1016/0002-9149(90)90939-x. [DOI] [PubMed] [Google Scholar]
  36. Wehlage D. R., Böhrer H., Ruffmann K. Impairment of left ventricular diastolic function during coronary artery bypass grafting. Anaesthesia. 1990 Jul;45(7):549–551. doi: 10.1111/j.1365-2044.1990.tb14828.x. [DOI] [PubMed] [Google Scholar]
  37. Weisel R. D., Burns R. J., Baird R. J., Hilton J. D., Ivanov J., Mickle D. A., Teoh K. H., Christakis G. T., Evans P. J., Scully H. E. Optimal postoperative volume loading. J Thorac Cardiovasc Surg. 1983 Apr;85(4):552–563. [PubMed] [Google Scholar]
  38. Weiss J. L., Frederiksen J. W., Weisfeldt M. L. Hemodynamic determinants of the time-course of fall in canine left ventricular pressure. J Clin Invest. 1976 Sep;58(3):751–760. doi: 10.1172/JCI108522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Yamagishi T., Uki K., Yamauchi M., Yamada H., Kohno M., Kumada T., Ozaki M., Kusukawa R. Acute effects of sublingual isosorbide dinitrate on global and regional left ventricular diastolic filling in normal persons. Am J Cardiol. 1986 Nov 15;58(11):1061–1066. doi: 10.1016/0002-9149(86)90115-3. [DOI] [PubMed] [Google Scholar]

Articles from Heart are provided here courtesy of BMJ Publishing Group

RESOURCES