Skip to main content
Heart logoLink to Heart
. 1996 May;75(5):509–512. doi: 10.1136/hrt.75.5.509

Disturbance of peripheral microvascular fluid permeability by the onset of atrioventricular asynchrony in patients with programmable pacemakers.

I R Mahy 1, D M Lewis 1, A C Shore 1, M D Penney 1, L D Smith 1, J E Tooke 1
PMCID: PMC484351  PMID: 8665346

Abstract

BACKGROUND: In vitro and in vivo evidence suggests that atrial natriuretic peptide can enhance fluid flux from intravascular to extravascular compartments. The relevance of this to human pathophysiology remains unclear. OBJECTIVES: To determine whether a central haemodynamic change associated with increased plasma concentrations of atrial natriuretic peptide produces detectable change in the capillary filtration coefficient in a peripheral microvascular bed. PATIENTS: 12 patients with programmable dual chamber permanent pacemakers. METHODS: Calf capillary filtration coefficient (using a modified plethysmographic technique) and plasma atrial natriuretic peptide concentrations were measured during atrioventricular synchronous and ventricular pacing. RESULTS: Atrioventricular asynchrony was associated with higher mean (SD) concentrations of atrial natriuretic peptide (231.9 (123.1) v 53.5 (38.8) pg/ml) and an increased mean (SD) calf capillary filtration coefficient (4.2 (1.1) v 3.6 (1.1) ml/min.mm Hg.100 ml x 10(-3)), but there was no correlation between the magnitude of the change in these variables in individual patients. CONCLUSIONS: The peripheral capillary filtration coefficient may change in response to altered central haemodynamics. Atrial natriuretic peptide remains one potential candidate mechanism, but other factors are also likely to be involved.

Full text

PDF
509

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe Y., Kadowaki K., Sato T., Nakagomi A., Kumagai T. [Secretion of atrial natriuretic peptide during artificial pacing: assessments including the influence of ventriculoatrial conduction]. J Cardiol. 1992;22(1):265–270. [PubMed] [Google Scholar]
  2. Ando S., Imaizumi T., Harada S., Hirooka Y., Takeshita A. Atrial natriuretic peptide increases human capillary filtration and venous distensibility. J Hypertens. 1992 May;10(5):451–457. doi: 10.1097/00004872-199205000-00008. [DOI] [PubMed] [Google Scholar]
  3. Chien Y. W., Frohlich E. D., Trippodo N. C. Atrial natriuretic peptide increases resistance to venous return in rats. Am J Physiol. 1987 May;252(5 Pt 2):H894–H899. doi: 10.1152/ajpheart.1987.252.5.H894. [DOI] [PubMed] [Google Scholar]
  4. Doorenbos C. J., Blauw G. J., van Brummelen P. Arterial and venous effects of atrial natriuretic peptide in the human forearm. Am J Hypertens. 1991 Apr;4(4 Pt 1):333–340. doi: 10.1093/ajh/4.4.333. [DOI] [PubMed] [Google Scholar]
  5. Faber J. E., Gettes D. R., Gianturco D. P. Microvascular effects of atrial natriuretic factor: interaction with alpha 1- and alpha 2-adrenoceptors. Circ Res. 1988 Aug;63(2):415–428. doi: 10.1161/01.res.63.2.415. [DOI] [PubMed] [Google Scholar]
  6. Gamble J., Gartside I. B., Christ F. A reassessment of mercury in silastic strain gauge plethysmography for microvascular permeability assessment in man. J Physiol. 1993 May;464:407–422. doi: 10.1113/jphysiol.1993.sp019642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Groban L., Cowley A. W., Jr, Ebert T. J. Atrial natriuretic peptide augments forearm capillary filtration in humans. Am J Physiol. 1990 Jul;259(1 Pt 2):H258–H263. doi: 10.1152/ajpheart.1990.259.1.H258. [DOI] [PubMed] [Google Scholar]
  8. Groban L., Ebert T. J., Kreis D. U., Skelton M. M., Van Wynsberghe D. M., Cowley A. W., Jr Hemodynamic, renal, and hormonal responses to incremental ANF infusions in humans. Am J Physiol. 1989 May;256(5 Pt 2):F780–F786. doi: 10.1152/ajprenal.1989.256.5.F780. [DOI] [PubMed] [Google Scholar]
  9. Huxley V. H., Tucker V. L., Verburg K. M., Freeman R. H. Increased capillary hydraulic conductivity induced by atrial natriuretic peptide. Circ Res. 1987 Feb;60(2):304–307. doi: 10.1161/01.res.60.2.304. [DOI] [PubMed] [Google Scholar]
  10. Jaap A. J., Shore A. C., Gartside I. B., Gamble J., Tooke J. E. Increased microvascular fluid permeability in young type 1 (insulin-dependent) diabetic patients. Diabetologia. 1993 Jul;36(7):648–652. doi: 10.1007/BF00404075. [DOI] [PubMed] [Google Scholar]
  11. Jacobsen T. N., Kassis E., Amtorp O. Effects of orthostatic stress on peripheral capillary filtration in mild congestive heart failure after healing of myocardial infarction. Am J Cardiol. 1993 Aug 15;72(5):418–422. doi: 10.1016/0002-9149(93)91133-3. [DOI] [PubMed] [Google Scholar]
  12. Mahy I. R., Shore A. C., Smith L. D., Tooke J. E. The peripheral microcirculation in atrial fibrillation: preservation of capillary pressure and filtration coefficient. Cardiovasc Res. 1994 Oct;28(10):1555–1558. doi: 10.1093/cvr/28.10.1555. [DOI] [PubMed] [Google Scholar]
  13. Noll B., Krappe J., Göke B. Beeinflussung des atrialen natriuretischen Faktors durch die AV-Uberleitungszeit bei Schrittmacherträgern. Dtsch Med Wochenschr. 1988 Dec 23;113(51-52):1994–1996. doi: 10.1055/s-2008-1067925. [DOI] [PubMed] [Google Scholar]
  14. Noll B., Krappe J., Göke B., Maisch B. Influence of pacing mode and rate on peripheral levels of atrial natriuretic peptide (ANP). Pacing Clin Electrophysiol. 1989 Nov;12(11):1763–1768. doi: 10.1111/j.1540-8159.1989.tb01862.x. [DOI] [PubMed] [Google Scholar]
  15. Penney M. D., Hampton D., Oleesky D. A., Livingstone C., Mulkerrin E. Radioimmunoassays of arginine vasopressin and atrial natriuretic peptide: application of a common protocol for plasma extraction using Sep-Pak C18 cartridges. Ann Clin Biochem. 1992 Nov;29(Pt 6):652–658. doi: 10.1177/000456329202900606. [DOI] [PubMed] [Google Scholar]
  16. Rölleke T., Berke B., Arndt J. O. Atrial natriuretic peptide alters neither capillary filtration nor vascular compliance of both skin and skeletal muscle of humans. Basic Res Cardiol. 1994 Mar-Apr;89(2):192–205. doi: 10.1007/BF00788737. [DOI] [PubMed] [Google Scholar]
  17. Stangl K., Weil J., Seitz K., Laule M., Gerzer R. Influence of AV synchrony on the plasma levels of atrial natriuretic peptide (ANP) in patients with total AV block. Pacing Clin Electrophysiol. 1988 Aug;11(8):1176–1181. doi: 10.1111/j.1540-8159.1988.tb03969.x. [DOI] [PubMed] [Google Scholar]
  18. Theodorakis G. N., Kremastinos D. T., Markianos M., Livanis E., Karavolias G., Toutouzas P. K. Total sympathetic activity and atrial natriuretic factor levels in VVI and DDD pacing with different atrioventricular delays during daily activity and exercise. Eur Heart J. 1992 Nov;13(11):1477–1481. doi: 10.1093/oxfordjournals.eurheartj.a060089. [DOI] [PubMed] [Google Scholar]
  19. Volpe M., Lembo G., Condorelli G., De Luca N., Lamenza F., Indolfi C., Trimarco B. Converting enzyme inhibition prevents the effects of atrial natriuretic factor on baroreflex responses in humans. Circulation. 1990 Oct;82(4):1214–1221. doi: 10.1161/01.cir.82.4.1214. [DOI] [PubMed] [Google Scholar]
  20. Wijeyaratne C. N., Moult P. J. The effect of alpha human atrial natriuretic peptide on plasma volume and vascular permeability in normotensive subjects. J Clin Endocrinol Metab. 1993 Feb;76(2):343–346. doi: 10.1210/jcem.76.2.8432776. [DOI] [PubMed] [Google Scholar]

Articles from Heart are provided here courtesy of BMJ Publishing Group

RESOURCES