Abstract
OBJECTIVE: To evaluate the accuracy of quantitative three dimensional echocardiography in patients with deformed left ventricles. DESIGN: Three dimensional and cross sectional echocardiographic estimates of left ventricular volume and ejection fraction were prospectively compared to those obtained from magnetic resonance imaging. SETTING: Echocardiography laboratory of a university hospital. PATIENTS: 26 patients (9 months to 42 years, median age 11 years) with pulmonary hypertension and fixed reversal of normal interventricular septal curvature. MAIN OUTCOME MEASURES: Left ventricular end diastolic and end systolic volumes and ejection fraction. RESULTS: Three dimensional echocardiographic comparison to magnetic resonance imaging (MRI) yielded r values of 0.94 and 0.87 with a bias of -6.9 (SD 6.9) ml and -16 (11.2) ml for systolic and diastolic volumes respectively. Inter-observer variability was minimal (8.3% and 7.6% respectively). Cross sectional echocardiography gave correlation coefficients of 0.62 and 0.80 and bias of 3.1 (14.1) ml and 16.3 (18.3) ml for systolic and diastolic volumes respectively. Ejection fraction by three dimensional echocardiography also had closer agreement with MRI (bias = 1.1 (7.7)%) than cross sectional echocardiography (bias = 4.4 (13.9)%). CONCLUSIONS: Three dimensional echocardiography provides reliable estimates of left ventricular volumes and ejection fraction, comparable to magnetic resonance imaging in pulmonary hypertension patients with compressed ventricular geometry. Because it eliminates the need for geometric assumptions it shows closer agreement with magnetic resonance imaging in that setting than cross sectional echocardiography.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Folland E. D., Parisi A. F., Moynihan P. F., Jones D. R., Feldman C. L., Tow D. E. Assessment of left ventricular ejection fraction and volumes by real-time, two-dimensional echocardiography. A comparison of cineangiographic and radionuclide techniques. Circulation. 1979 Oct;60(4):760–766. doi: 10.1161/01.cir.60.4.760. [DOI] [PubMed] [Google Scholar]
- Geiser E. A., Ariet M., Conetta D. A., Lupkiewicz S. M., Christie L. G., Jr, Conti C. R. Dynamic three-dimensional echocardiographic reconstruction of the intact human left ventricle: technique and initial observations in patients. Am Heart J. 1982 Jun;103(6):1056–1065. doi: 10.1016/0002-8703(82)90569-5. [DOI] [PubMed] [Google Scholar]
- Ghosh A., Nanda N. C., Maurer G. Three-dimensional reconstruction of echo-cardiographic images using the rotation method. Ultrasound Med Biol. 1982;8(6):655–661. doi: 10.1016/0301-5629(82)90122-3. [DOI] [PubMed] [Google Scholar]
- Gopal A. S., Keller A. M., Rigling R., King D. L., Jr, King D. L. Left ventricular volume and endocardial surface area by three-dimensional echocardiography: comparison with two-dimensional echocardiography and nuclear magnetic resonance imaging in normal subjects. J Am Coll Cardiol. 1993 Jul;22(1):258–270. doi: 10.1016/0735-1097(93)90842-o. [DOI] [PubMed] [Google Scholar]
- Gopal A. S., Shen Z., Sapin P. M., Keller A. M., Schnellbaecher M. J., Leibowitz D. W., Akinboboye O. O., Rodney R. A., Blood D. K., King D. L. Assessment of cardiac function by three-dimensional echocardiography compared with conventional noninvasive methods. Circulation. 1995 Aug 15;92(4):842–853. doi: 10.1161/01.cir.92.4.842. [DOI] [PubMed] [Google Scholar]
- Handschumacher M. D., Lethor J. P., Siu S. C., Mele D., Rivera J. M., Picard M. H., Weyman A. E., Levine R. A. A new integrated system for three-dimensional echocardiographic reconstruction: development and validation for ventricular volume with application in human subjects. J Am Coll Cardiol. 1993 Mar 1;21(3):743–753. doi: 10.1016/0735-1097(93)90108-d. [DOI] [PubMed] [Google Scholar]
- Helak J. W., Reichek N. Quantitation of human left ventricular mass and volume by two-dimensional echocardiography: in vitro anatomic validation. Circulation. 1981 Jun;63(6):1398–1407. doi: 10.1161/01.cir.63.6.1398. [DOI] [PubMed] [Google Scholar]
- Higgins C. B. Which standard has the gold? J Am Coll Cardiol. 1992 Jun;19(7):1608–1609. doi: 10.1016/0735-1097(92)90626-x. [DOI] [PubMed] [Google Scholar]
- King D. L., King D. L., Jr, Shao M. Y. Three-dimensional spatial registration and interactive display of position and orientation of real-time ultrasound images. J Ultrasound Med. 1990 Sep;9(9):525–532. doi: 10.7863/jum.1990.9.9.525. [DOI] [PubMed] [Google Scholar]
- Martin R. W., Bashein G. Measurement of stroke volume with three-dimensional transesophageal ultrasonic scanning: comparison with thermodilution measurement. Anesthesiology. 1989 Mar;70(3):470–476. doi: 10.1097/00000542-198903000-00017. [DOI] [PubMed] [Google Scholar]
- Marx G. R., Fulton D. R., Pandian N. G., Vogel M., Cao Q. L., Ludomirsky A., Delabays A., Sugeng L., Klas B. Delineation of site, relative size and dynamic geometry of atrial septal defects by real-time three-dimensional echocardiography. J Am Coll Cardiol. 1995 Feb;25(2):482–490. doi: 10.1016/0735-1097(94)00372-w. [DOI] [PubMed] [Google Scholar]
- McPherson D. D., Skorton D. J., Kodiyalam S., Petree L., Noel M. P., Kieso R., Kerber R. E., Collins S. M., Chandran K. B. Finite element analysis of myocardial diastolic function using three-dimensional echocardiographic reconstructions: application of a new method for study of acute ischemia in dogs. Circ Res. 1987 May;60(5):674–682. doi: 10.1161/01.res.60.5.674. [DOI] [PubMed] [Google Scholar]
- Mercier J. C., DiSessa T. G., Jarmakani J. M., Nakanishi T., Hiraishi S., Isabel-Jones J., Friedman W. F. Two-dimensional echocardiographic assessment of left ventricular volumes and ejection fraction in children. Circulation. 1982 May;65(5):962–969. doi: 10.1161/01.cir.65.5.962. [DOI] [PubMed] [Google Scholar]
- Naik M. M., Diamond G. A., Pai T., Soffer A., Siegel R. J. Correspondence of left ventricular ejection fraction determinations from two-dimensional echocardiography, radionuclide angiography and contrast cineangiography. J Am Coll Cardiol. 1995 Mar 15;25(4):937–942. doi: 10.1016/0735-1097(94)00506-L. [DOI] [PubMed] [Google Scholar]
- Raichlen J. S., Trivedi S. S., Herman G. T., St John Sutton M. G., Reichek N. Dynamic three-dimensional reconstruction of the left ventricle from two-dimensional echocardiograms. J Am Coll Cardiol. 1986 Aug;8(2):364–370. doi: 10.1016/s0735-1097(86)80052-3. [DOI] [PubMed] [Google Scholar]
- Shapiro E. P., Rogers W. J., Beyar R., Soulen R. L., Zerhouni E. A., Lima J. A., Weiss J. L. Determination of left ventricular mass by magnetic resonance imaging in hearts deformed by acute infarction. Circulation. 1989 Mar;79(3):706–711. doi: 10.1161/01.cir.79.3.706. [DOI] [PubMed] [Google Scholar]
- Silverman N. H., Ports T. A., Snider A. R., Schiller N. B., Carlsson E., Heilbron D. C. Determination of left ventricular volume in children: echocardiographic and angiographic comparisons. Circulation. 1980 Sep;62(3):548–557. doi: 10.1161/01.cir.62.3.548. [DOI] [PubMed] [Google Scholar]
- Vogel M., Lösch S. Dynamic three-dimensional echocardiography with a computed tomography imaging probe: initial clinical experience with transthoracic application in infants and children with congenital heart defects. Br Heart J. 1994 May;71(5):462–467. doi: 10.1136/hrt.71.5.462. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wyatt H. L., Meerbaum S., Heng M. K., Gueret P., Corday E. Cross-sectional echocardiography. III. Analysis of mathematic models for quantifying volume of symmetric and asymmetric left ventricles. Am Heart J. 1980 Dec;100(6 Pt 1):821–828. doi: 10.1016/0002-8703(80)90062-9. [DOI] [PubMed] [Google Scholar]