Skip to main content
Heart logoLink to Heart
. 1996 Dec;76(6):513–519. doi: 10.1136/hrt.76.6.513

Effects of blockade of fast and slow inward current channels on ventricular fibrillation in the pig heart.

A J Stewart 1, J D Allen 1, A B Devine 1, A A Adgey 1
PMCID: PMC484605  PMID: 9014801

Abstract

OBJECTIVE: To determine the contribution of fast and slow inward channels to the electrocardiogram (ECG) of ventricular fibrillation. METHODS: Ventricular fibrillation was induced by endocardial electrical stimulation in pigs anaesthetised with pentobarbitone sodium (30 mg/kg intravenously). ECGs simultaneously recorded from the body surface (lead II) and from the endocardium were studied by power spectrum analysis (0-40 Hz). RESULTS: The mean (SEM) dominant frequency of fibrillation (9.0 (1.1) Hz in lead II at 0-40 s) did not change significantly with time in pigs given intravenous saline. However, the dominant frequency was significantly reduced by intravenous pretreatment with the class I antiarrhythmic drugs, lignocaine (3 mg/kg, 6.5 (0.5) Hz; 10 mg/kg, 4.2 (0.6) Hz), mexiletine (3 mg/kg, 6.2 (0.4) Hz; 10 mg/kg, 5.5 (0.4) Hz), and disopyramide (2.5 mg/kg, 5.4 (0.6) Hz). After flecainide (3 mg/kg, 6.9 (0.5) Hz) the reduction in frequency was not significant. Similar data were obtained with endocardial recordings. In contrast pre-treatment with verapamil (0.2 mg/kg, 11.7 (0.8) Hz; and 1.0 mg/kg, 12.9 (1.6) Hz) produced a significantly higher dominant frequency of fibrillation than saline and widened the bandwidth of frequencies around the dominant frequency. CONCLUSIONS: These results indicate that voltage-dependent sodium channel currents contribute to the rapid frequencies of ventricular fibrillation. Blockade of L-type inward calcium channel activity increases the fibrillation frequency and fractionates the frequencies of the fibrillation wavefronts.

Full text

PDF
513

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auffermann W., Wagner S., Wu S., Buser P., Parmley W. W., Wikman-Coffelt J. Calcium inhibition of glycolysis contributes to ischaemic injury. Cardiovasc Res. 1990 Jun;24(6):510–520. doi: 10.1093/cvr/24.6.510. [DOI] [PubMed] [Google Scholar]
  2. Brown C. G., Dzwonczyk R., Werman H. A., Hamlin R. L. Estimating the duration of ventricular fibrillation. Ann Emerg Med. 1989 Nov;18(11):1181–1185. doi: 10.1016/s0196-0644(89)80056-3. [DOI] [PubMed] [Google Scholar]
  3. Carlisle E. J., Allen J. D., Kernohan W. G., Anderson J., Adgey A. A. Fourier analysis of ventricular fibrillation of varied aetiology. Eur Heart J. 1990 Feb;11(2):173–181. doi: 10.1093/oxfordjournals.eurheartj.a059674. [DOI] [PubMed] [Google Scholar]
  4. Carlisle E. J., Allen J. D., Kernohan W. G., Leahey W., Adgey A. A. Pharmacological analysis of established ventricular fibrillation. Br J Pharmacol. 1990 Jul;100(3):530–534. doi: 10.1111/j.1476-5381.1990.tb15841.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clayton R. H., Murray A., Campbell R. W. Analysis of the body surface ECG measured in independent leads during ventricular fibrillation in humans. Pacing Clin Electrophysiol. 1995 Oct;18(10):1876–1881. doi: 10.1111/j.1540-8159.1995.tb03835.x. [DOI] [PubMed] [Google Scholar]
  6. Clayton R. H., Murray A., Campbell R. W. Changes in the surface electrocardiogram during the onset of spontaneous ventricular fibrillation in man. Eur Heart J. 1994 Feb;15(2):184–188. doi: 10.1093/oxfordjournals.eurheartj.a060474. [DOI] [PubMed] [Google Scholar]
  7. Dahl G., Isenberg G. Decoupling of heart muscle cells: correlation with increased cytoplasmic calcium activity and with changes of nexus ultrastructure. J Membr Biol. 1980 Mar 31;53(1):63–75. doi: 10.1007/BF01871173. [DOI] [PubMed] [Google Scholar]
  8. Davis J., Matsubara T., Scheinman M. M., Katzung B., Hondeghem L. H. Use-dependent effects of lidocaine on conduction in canine myocardium: application of the modulated receptor hypothesis in vivo. Circulation. 1986 Jul;74(1):205–214. doi: 10.1161/01.cir.74.1.205. [DOI] [PubMed] [Google Scholar]
  9. Echt D. S., Black J. N., Barbey J. T., Coxe D. R., Cato E. Evaluation of antiarrhythmic drugs on defibrillation energy requirements in dogs. Sodium channel block and action potential prolongation. Circulation. 1989 May;79(5):1106–1117. doi: 10.1161/01.cir.79.5.1106. [DOI] [PubMed] [Google Scholar]
  10. Echt D. S., Mason J. W. Management of serious cardiac arrhythmias with drugs. Cardiovasc Clin. 1984;14(3):191–209. [PubMed] [Google Scholar]
  11. Elharrar V., Gaum W. E., Zipes D. P. Effect of drugs on conduction delay and incidence of ventricular arrhythmias induced by acute coronary occlusion in dogs. Am J Cardiol. 1977 Apr;39(4):544–549. doi: 10.1016/s0002-9149(77)80164-1. [DOI] [PubMed] [Google Scholar]
  12. Fleet W. F., Johnson T. A., Graebner C. A., Engle C. L., Gettes L. S. Effects of verapamil on ischemia-induced changes in extracellular K+, pH, and local activation in the pig. Circulation. 1986 Apr;73(4):837–846. doi: 10.1161/01.cir.73.4.837. [DOI] [PubMed] [Google Scholar]
  13. Fondacaro J. D., Han J., Yoon M. S. Effects of verapamil on ventricular rhythm during acute coronary occlusion. Am Heart J. 1978 Jul;96(1):81–86. doi: 10.1016/0002-8703(78)90129-1. [DOI] [PubMed] [Google Scholar]
  14. Hirata Y., Kodama I., Iwamura N., Shimizu T., Toyama J., Yamada K. Effects of verapamil on canine Purkinje fibres and ventricular muscle fibres with particular reference to the alternation of action potential duration after a sudden increase in driving rate. Cardiovasc Res. 1979 Jan;13(1):1–8. doi: 10.1093/cvr/13.1.1. [DOI] [PubMed] [Google Scholar]
  15. Ideker R. E., Klein G. J., Harrison L., Smith W. M., Kasell J., Reimer K. A., Wallace A. G., Gallagher J. J. The transition to ventricular fibrillation induced by reperfusion after acute ischemia in the dog: a period of organized epicardial activation. Circulation. 1981 Jun;63(6):1371–1379. doi: 10.1161/01.cir.63.6.1371. [DOI] [PubMed] [Google Scholar]
  16. Janse M. J., van Capelle F. J., Morsink H., Kléber A. G., Wilms-Schopman F., Cardinal R., d'Alnoncourt C. N., Durrer D. Flow of "injury" current and patterns of excitation during early ventricular arrhythmias in acute regional myocardial ischemia in isolated porcine and canine hearts. Evidence for two different arrhythmogenic mechanisms. Circ Res. 1980 Aug;47(2):151–165. doi: 10.1161/01.res.47.2.151. [DOI] [PubMed] [Google Scholar]
  17. Jenkins M. G., Johnson T. A., Engle C., Gettes L. S. Metabolic protection by verapamil during graded coronary flow reduction independent of effect on baseline systolic function. Separation of mechanical and ionic markers of ischemia. Circulation. 1989 Dec;80(6):1870–1877. doi: 10.1161/01.cir.80.6.1870. [DOI] [PubMed] [Google Scholar]
  18. Kaplan D. T., Cohen R. J. Is fibrillation chaos? Circ Res. 1990 Oct;67(4):886–892. doi: 10.1161/01.res.67.4.886. [DOI] [PubMed] [Google Scholar]
  19. Kojima S., Wikman-Coffelt J., Wu S. T., Parmley W. W. Nature of [Ca2+]i transients during ventricular fibrillation and quinidine treatment in perfused rat hearts. Am J Physiol. 1994 Apr;266(4 Pt 2):H1473–H1484. doi: 10.1152/ajpheart.1994.266.4.H1473. [DOI] [PubMed] [Google Scholar]
  20. Koretsune Y., Marban E. Cell calcium in the pathophysiology of ventricular fibrillation and in the pathogenesis of postarrhythmic contractile dysfunction. Circulation. 1989 Aug;80(2):369–379. doi: 10.1161/01.cir.80.2.369. [DOI] [PubMed] [Google Scholar]
  21. Marshall R. J., Parratt J. R. The effects of disopyramide phosphate on early post-coronary artery ligation dysrhythmias and on epicardial ST-segment elevation in anaesthetized dogs. Br J Pharmacol. 1979 Jun;66(2):241–250. doi: 10.1111/j.1476-5381.1979.tb13672.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Martin G., Cosin J., Such M., Hernandez A., Llamas P. Relation between power spectrum time course during ventricular fibrillation and electromechanical dissociation. Effects of coronary perfusion and nifedipine. Eur Heart J. 1986 Jul;7(7):560–569. doi: 10.1093/oxfordjournals.eurheartj.a062106. [DOI] [PubMed] [Google Scholar]
  23. Merillat J. C., Lakatta E. G., Hano O., Guarnieri T. Role of calcium and the calcium channel in the initiation and maintenance of ventricular fibrillation. Circ Res. 1990 Nov;67(5):1115–1123. doi: 10.1161/01.res.67.5.1115. [DOI] [PubMed] [Google Scholar]
  24. Muller C. A., Opie L. H., Hamm C. W., Peisach M., Pineda C. A., Thandroyen F. T. Verapamil and tiapamil in prevention of ventricular fibrillation in pigs with coronary ligation. Comparative effects on left ventricular function. Circulation. 1988 Jul;78(1):227–232. doi: 10.1161/01.cir.78.1.227. [DOI] [PubMed] [Google Scholar]
  25. Pallandi R. T., Campbell T. J. Selective depression of conduction of premature action potentials in canine Purkinje fibres by class Ib antiarrhythmic drugs: comparison with Ia and Ic drugs. Cardiovasc Res. 1988 Mar;22(3):171–178. doi: 10.1093/cvr/22.3.171. [DOI] [PubMed] [Google Scholar]
  26. Pedersen L. E., Hermansen K., Olesen H. P., Rasmussen S. N. The pharmacokinetics and protein binding of disopyramide in pigs. Acta Pharmacol Toxicol (Copenh) 1986 Apr;58(4):282–288. doi: 10.1111/j.1600-0773.1986.tb00110.x. [DOI] [PubMed] [Google Scholar]
  27. Pogwizd S. M., Corr P. B. Mechanisms underlying ventricular tachycardia and fibrillation in the ischemic heart: relation to nonlinear dynamics. Ann N Y Acad Sci. 1990;591:278–300. doi: 10.1111/j.1749-6632.1990.tb15095.x. [DOI] [PubMed] [Google Scholar]
  28. Rosen M. R., Hoffman B. F., Wit A. L. Electrophysiology and pharmacology of cardiac arrhythmias. V. Cardiac antiarrhythmic effects of lidocaine. Am Heart J. 1975 Apr;89(4):526–536. doi: 10.1016/0002-8703(75)90162-3. [DOI] [PubMed] [Google Scholar]
  29. Scamps F., Undrovinas A., Vassort G. Inhibition of ICa in single frog cardiac cells by quinidine, flecainide, ethmozin, and ethacizin. Am J Physiol. 1989 Mar;256(3 Pt 1):C549–C559. doi: 10.1152/ajpcell.1989.256.3.C549. [DOI] [PubMed] [Google Scholar]
  30. Schräder R., Brooks M., Echt D. S. Effects of verapamil and Bay K 8644 on defibrillation energy requirements in dogs. J Cardiovasc Pharmacol. 1992 Jun;19(6):839–850. doi: 10.1097/00005344-199206000-00001. [DOI] [PubMed] [Google Scholar]
  31. Sherman L. G., Liang C., Boden W. E., Hood W. B., Jr The effect of verapamil on mechanical performance of acutely ischemic and reperfused myocardium in the conscious dog. Circ Res. 1981 Feb;48(2):224–232. doi: 10.1161/01.res.48.2.224. [DOI] [PubMed] [Google Scholar]
  32. Stewart A. J., Allen J. D., Adgey A. A. Frequency analysis of ventricular fibrillation and resuscitation success. Q J Med. 1992 Oct;85(306):761–769. [PubMed] [Google Scholar]
  33. Vaughan Williams E. M. A classification of antiarrhythmic actions reassessed after a decade of new drugs. J Clin Pharmacol. 1984 Apr;24(4):129–147. doi: 10.1002/j.1552-4604.1984.tb01822.x. [DOI] [PubMed] [Google Scholar]
  34. Verdouw P. D., Deckers J. W., Conrad G. J. Antiarrhythmic and hemodynamic actions of flecainide acetate (R-818) in the ischemic porcine heart. J Cardiovasc Pharmacol. 1979 Jul-Aug;1(4):473–486. doi: 10.1097/00005344-197907000-00010. [DOI] [PubMed] [Google Scholar]
  35. Vincent J. L., Goldstein J., Dufaye P., Domb M. Electromechanical dissociation after ventricular fibrillation: prevention with calcium-entry blockers. J Cardiovasc Pharmacol. 1984 Nov-Dec;6(6):1124–1131. [PubMed] [Google Scholar]
  36. Vogt B., Martin C., Meesmann W. Prophylactic lidocaine: concentrations in plasma and myocardial tissue and antifibrillatoric efficacy during early ischemia in dogs and pigs. J Cardiovasc Pharmacol. 1988;12(5):571–578. [PubMed] [Google Scholar]

Articles from Heart are provided here courtesy of BMJ Publishing Group

RESOURCES