Abstract
OBJECTIVE: To investigate the role of endothelial vasodilating factors in adaptation of myocardial blood flow to increased metabolic demands. DESIGN: Alterations in the effects of endothelium dependent (acetylcholine) and independent (sodium nitroprusside) vasodilators and the beta 1 receptor agonist dobutamine were studied after inhibition of endothelium derived relaxing factor (EDRF) with L-NG-nitro-arginine methyl ester (L-NAME), prostanoid synthesis with indomethacin, and ATP sensitive potassium channels with glibenclamide. EXPERIMENTAL ANIMALS: Female Wistar rats, in situ perfused heart. MAIN OUTCOME MEASURES: Myocardial blood flow (H2 clearance); systolic fractional thickening (pulsed Doppler); mean arterial blood pressure. RESULTS: L-NAME reduced myocardial blood flow by 58 (12)% (mean (SD), P < 0.001) and systolic thickening fraction (FT) by 36 (9)% (P < 0.05). These effects were significantly reversed by administration of L-arginine but not D-arginine. Pretreatment with L-NAME inhibited the increase in myocardial blood flow caused by acetylcholine (control: +42 (9)%; L-NAME: -29 (7)%, P < 0.001) but did not affect the increase in myocardial blood flow caused by sodium nitroprusside (control: +44 (5)%; L-NAME: +34 (10)%, NS). Pretreatment with L-NAME did not change the effect of dobutamine on myocardial blood flow (+61 (3)%) and FT (+32 (8)%) compared with baseline values (P < 0.001). Neither pretreatment with indomethacin nor with glibenclamide reduced the dobutamine induced increase in myocardial blood flow. CONCLUSIONS: Inhibition of EDRF, prostanoid synthesis, and ATP sensitive potassium channels did not reduce the vasodilator reserve during increased metabolic demands induced by beta 1 adrenergic stimulation. Therefore, adaptation of myocardial blood flow to increased metabolic demands is independent of endothelial relaxing factors in the rat heart.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AUKLAND K., BOWER B. F., BERLINER R. W. MEASUREMENT OF LOCAL BLOOD FLOW WITH HYDROGEN GAS. Circ Res. 1964 Feb;14:164–187. doi: 10.1161/01.res.14.2.164. [DOI] [PubMed] [Google Scholar]
- Altman J. D., Kinn J., Duncker D. J., Bache R. J. Effect of inhibition of nitric oxide formation on coronary blood flow during exercise in the dog. Cardiovasc Res. 1994 Jan;28(1):119–124. doi: 10.1093/cvr/28.1.119. [DOI] [PubMed] [Google Scholar]
- Bauersachs J., Hecker M., Busse R. Display of the characteristics of endothelium-derived hyperpolarizing factor by a cytochrome P450-derived arachidonic acid metabolite in the coronary microcirculation. Br J Pharmacol. 1994 Dec;113(4):1548–1553. doi: 10.1111/j.1476-5381.1994.tb17172.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berne R. M. The role of adenosine in the regulation of coronary blood flow. Circ Res. 1980 Dec;47(6):807–813. doi: 10.1161/01.res.47.6.807. [DOI] [PubMed] [Google Scholar]
- Bolli R. Mechanism of myocardial "stunning". Circulation. 1990 Sep;82(3):723–738. doi: 10.1161/01.cir.82.3.723. [DOI] [PubMed] [Google Scholar]
- Cowan C. L., Cohen R. A. Two mechanisms mediate relaxation by bradykinin of pig coronary artery: NO-dependent and -independent responses. Am J Physiol. 1991 Sep;261(3 Pt 2):H830–H835. doi: 10.1152/ajpheart.1991.261.3.H830. [DOI] [PubMed] [Google Scholar]
- Cunningham L. D., Brecher P., Cohen R. A. Platelet-derived growth factor receptors on macrovascular endothelial cells mediate relaxation via nitric oxide in rat aorta. J Clin Invest. 1992 Mar;89(3):878–882. doi: 10.1172/JCI115667. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dohi Y., Thiel M. A., Bühler F. R., Lüscher T. F. Activation of endothelial L-arginine pathway in resistance arteries. Effect of age and hypertension. Hypertension. 1990 Aug;16(2):170–179. doi: 10.1161/01.hyp.16.2.170. [DOI] [PubMed] [Google Scholar]
- Duncker D. J., Bache R. J. Inhibition of nitric oxide production aggravates myocardial hypoperfusion during exercise in the presence of a coronary artery stenosis. Circ Res. 1994 Apr;74(4):629–640. doi: 10.1161/01.res.74.4.629. [DOI] [PubMed] [Google Scholar]
- Furchgott R. F., Zawadzki J. V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980 Nov 27;288(5789):373–376. doi: 10.1038/288373a0. [DOI] [PubMed] [Google Scholar]
- García J. L., Fernández N., García-Villalón A. L., Monge L., Gómez B., Diéguez G. Effects of nitric oxide synthesis inhibition on the goat coronary circulation under basal conditions and after vasodilator stimulation. Br J Pharmacol. 1992 Jul;106(3):563–567. doi: 10.1111/j.1476-5381.1992.tb14375.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gardiner S. M., Compton A. M., Kemp P. A., Bennett T. Regional and cardiac haemodynamic effects of NG-nitro-L-arginine methyl ester in conscious, Long Evans rats. Br J Pharmacol. 1990 Nov;101(3):625–631. doi: 10.1111/j.1476-5381.1990.tb14131.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garland C. J., McPherson G. A. Evidence that nitric oxide does not mediate the hyperpolarization and relaxation to acetylcholine in the rat small mesenteric artery. Br J Pharmacol. 1992 Feb;105(2):429–435. doi: 10.1111/j.1476-5381.1992.tb14270.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Graves J., Poston L. Beta-adrenoceptor agonist mediated relaxation of rat isolated resistance arteries: a role for the endothelium and nitric oxide. Br J Pharmacol. 1993 Mar;108(3):631–637. doi: 10.1111/j.1476-5381.1993.tb12853.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gross G. J., O'Rourke S. T., Pelc L. R., Warltier D. C. Myocardial and endothelial dysfunction after multiple, brief coronary occlusions: role of oxygen radicals. Am J Physiol. 1992 Dec;263(6 Pt 2):H1703–H1709. doi: 10.1152/ajpheart.1992.263.6.H1703. [DOI] [PubMed] [Google Scholar]
- Hartley C. J., Latson L. A., Michael L. H., Seidel C. L., Lewis R. M., Entman M. L. Doppler measurement of myocardial thickening with a single epicardial transducer. Am J Physiol. 1983 Dec;245(6):H1066–H1072. doi: 10.1152/ajpheart.1983.245.6.H1066. [DOI] [PubMed] [Google Scholar]
- Headrick J. P., Angello D. A., Berne R. M. Effects of brief coronary occlusion and reperfusion on porcine coronary artery reactivity. Circulation. 1990 Dec;82(6):2163–2169. doi: 10.1161/01.cir.82.6.2163. [DOI] [PubMed] [Google Scholar]
- Jones C. J., Kuo L., Davis M. J., DeFily D. V., Chilian W. M. Role of nitric oxide in the coronary microvascular responses to adenosine and increased metabolic demand. Circulation. 1995 Mar 15;91(6):1807–1813. doi: 10.1161/01.cir.91.6.1807. [DOI] [PubMed] [Google Scholar]
- Kostic M. M., Schrader J. Role of nitric oxide in reactive hyperemia of the guinea pig heart. Circ Res. 1992 Jan;70(1):208–212. doi: 10.1161/01.res.70.1.208. [DOI] [PubMed] [Google Scholar]
- Ku D. D. Coronary vascular reactivity after acute myocardial ischemia. Science. 1982 Nov 5;218(4572):576–578. doi: 10.1126/science.7123259. [DOI] [PubMed] [Google Scholar]
- Moncada S., Gryglewski R., Bunting S., Vane J. R. An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature. 1976 Oct 21;263(5579):663–665. doi: 10.1038/263663a0. [DOI] [PubMed] [Google Scholar]
- Narishige T., Egashira K., Akatsuka Y., Katsuda Y., Numaguchi K., Sakata M., Takeshita A. Glibenclamide, a putative ATP-sensitive K+ channel blocker, inhibits coronary autoregulation in anesthetized dogs. Circ Res. 1993 Oct;73(4):771–776. doi: 10.1161/01.res.73.4.771. [DOI] [PubMed] [Google Scholar]
- Palmer R. M., Ferrige A. G., Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987 Jun 11;327(6122):524–526. doi: 10.1038/327524a0. [DOI] [PubMed] [Google Scholar]
- Palmer R. M., Rees D. D., Ashton D. S., Moncada S. L-arginine is the physiological precursor for the formation of nitric oxide in endothelium-dependent relaxation. Biochem Biophys Res Commun. 1988 Jun 30;153(3):1251–1256. doi: 10.1016/s0006-291x(88)81362-7. [DOI] [PubMed] [Google Scholar]
- Rees D. D., Palmer R. M., Schulz R., Hodson H. F., Moncada S. Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo. Br J Pharmacol. 1990 Nov;101(3):746–752. doi: 10.1111/j.1476-5381.1990.tb14151.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shimokawa H., Vanhoutte P. M. Dietary omega 3 fatty acids and endothelium-dependent relaxations in porcine coronary arteries. Am J Physiol. 1989 Apr;256(4 Pt 2):H968–H973. doi: 10.1152/ajpheart.1989.256.4.H968. [DOI] [PubMed] [Google Scholar]
- Tiefenbacher C. P., Zimmermann R., Parekh N., Amann K., Tillmanns H., Rauch B., Kübler W. Preservation of myocardial blood flow by calcium antagonists does not prevent attenuation of regional myocardial function after repetitive brief periods of myocardial ischaemia in the rat heart. Eur Heart J. 1995 Aug;16(8):1057–1062. doi: 10.1093/oxfordjournals.eurheartj.a061047. [DOI] [PubMed] [Google Scholar]
- Toombs C. F., Moore T. L., Shebuski R. J. Limitation of infarct size in the rabbit by ischaemic preconditioning is reversible with glibenclamide. Cardiovasc Res. 1993 Apr;27(4):617–622. doi: 10.1093/cvr/27.4.617. [DOI] [PubMed] [Google Scholar]
- Tschudi M., Richard V., Bühler F. R., Lüscher T. F. Importance of endothelium-derived nitric oxide in porcine coronary resistance arteries. Am J Physiol. 1991 Jan;260(1 Pt 2):H13–H20. doi: 10.1152/ajpheart.1991.260.1.H13. [DOI] [PubMed] [Google Scholar]
- Tuttle R. R., Mills J. Dobutamine: development of a new catecholamine to selectively increase cardiac contractility. Circ Res. 1975 Jan;36(1):185–196. doi: 10.1161/01.res.36.1.185. [DOI] [PubMed] [Google Scholar]
- Vane J. R., Anggård E. E., Botting R. M. Regulatory functions of the vascular endothelium. N Engl J Med. 1990 Jul 5;323(1):27–36. doi: 10.1056/NEJM199007053230106. [DOI] [PubMed] [Google Scholar]
- Vanhoutte P. M., Houston D. S. Platelets, endothelium, and vasospasm. Circulation. 1985 Oct;72(4):728–734. doi: 10.1161/01.cir.72.4.728. [DOI] [PubMed] [Google Scholar]
- Vita J. A., Treasure C. B., Nabel E. G., McLenachan J. M., Fish R. D., Yeung A. C., Vekshtein V. I., Selwyn A. P., Ganz P. Coronary vasomotor response to acetylcholine relates to risk factors for coronary artery disease. Circulation. 1990 Feb;81(2):491–497. doi: 10.1161/01.cir.81.2.491. [DOI] [PubMed] [Google Scholar]
- Zeiher A. M., Drexler H., Wollschläger H., Just H. Endothelial dysfunction of the coronary microvasculature is associated with coronary blood flow regulation in patients with early atherosclerosis. Circulation. 1991 Nov;84(5):1984–1992. doi: 10.1161/01.cir.84.5.1984. [DOI] [PubMed] [Google Scholar]
