Abstract
OBJECTIVE: To investigate abnormalities of skeletal muscle metabolism in patients with congestive heart failure. SETTING: A university teaching hospital. METHODS: 43 patients (22 New York Heart Association (NYHA) grade II, 21 grade III) and 10 controls were studied. A forearm model of muscle metabolism was used, with a cannula inserted retrogradely into an antecubital vein of the dominant forearm. Maximum voluntary contraction (MVC) was measured using handgrip dynamometry. Subjects performed handgrip exercise, 5 s contraction followed by 5 s rest for 5 min at 25%, 50%, and 75% of MVC or until exhaustion. Blood was taken at rest and 0 and 2 min after exercise for measurement of lactate and ammonia. After 30 min the procedure was repeated with fixed workloads of 7 kg, 14 kg, and 21 kg. RESULTS: MVC (kg, mean (SEM)) was lower in patients than in controls (control 42.45 (2.3); NYHA II 34.13 (1.3), P = 0.003; NYHA III 33.13 (1.94), P = 0.008). Resting lactate (mmol/l) was higher in patients than controls (control 0.65 (0.06); NYHA II 0.84 (0.08), P = 0.13; NYHA III 1.18 (0.1), P = 0.002). Resting ammonia (mumol/l) was higher in NYHA III (65.7 (6.0)) than in NYHA II (48.0 (3.7), P = 0.016); no difference was found between controls (48.0 (7.1)) and patients. The overall lactate and ammonia response to exercise was greater in NYHA III than in NYHA II and controls (P < 0.05). At volitional exhaustion, peak lactate (mmol/l: NYHA III 3.31 (0.26); NYHA II 2.56 (0.16); controls 2.71 (0.22); P = 0.022 NYHA III v NYHA II) and ammonia (mumol/l: NYHA III) 126.4 (8.97); NYHA II 92.9 (7.23); controls 109 (16.3); P = 0.006 NYHA III v NYHA II) were higher in severe congestive heart failure. CONCLUSIONS: Skeletal muscle metabolism is abnormal at rest in congestive heart failure. During exercise, the degree of metabolic abnormality is related to the symptomatic status of the patient.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Clark A. L., Piepoli M., Coats A. J. Skeletal muscle and the control of ventilation on exercise: evidence for metabolic receptors. Eur J Clin Invest. 1995 May;25(5):299–305. doi: 10.1111/j.1365-2362.1995.tb01705.x. [DOI] [PubMed] [Google Scholar]
- Clark A. L., Sparrow J. L., Coats A. J. Muscle fatigue and dyspnoea in chronic heart failure: two sides of the same coin? Eur Heart J. 1995 Jan;16(1):49–52. doi: 10.1093/eurheartj/16.1.49. [DOI] [PubMed] [Google Scholar]
- Cowley A. J. Are breathlessness and fatigue in chronic heart failure due to the same pathophysiological abnormality? Eur Heart J. 1995 Jan;16(1):1–2. doi: 10.1093/eurheartj/16.1.1. [DOI] [PubMed] [Google Scholar]
- Cowley A. J., Stainer K., Rowley J. M., Hampton J. R. Abnormalities of the peripheral circulation and respiratory function in patients with severe heart failure. Br Heart J. 1986 Jan;55(1):75–80. doi: 10.1136/hrt.55.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Drexler H., Riede U., Münzel T., König H., Funke E., Just H. Alterations of skeletal muscle in chronic heart failure. Circulation. 1992 May;85(5):1751–1759. doi: 10.1161/01.cir.85.5.1751. [DOI] [PubMed] [Google Scholar]
- Franciosa J. A., Park M., Levine T. B. Lack of correlation between exercise capacity and indexes of resting left ventricular performance in heart failure. Am J Cardiol. 1981 Jan;47(1):33–39. doi: 10.1016/0002-9149(81)90286-1. [DOI] [PubMed] [Google Scholar]
- Francis G. S., Rector T. S. Maximal exercise tolerance as a therapeutic end point in heart failure--are we relying on the right measure? Am J Cardiol. 1994 Feb 1;73(4):304–306. doi: 10.1016/0002-9149(94)90238-0. [DOI] [PubMed] [Google Scholar]
- HUCKABEE W. E., JUDSON W. E. The role of anaerobic metabolism in the performance of mild muscular work. I. Relationship to oxygen consumption and cardiac output, and the effect of congestive heart failure. J Clin Invest. 1958 Nov;37(11):1577–1592. doi: 10.1172/JCI103751. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lipkin D. P., Jones D. A., Round J. M., Poole-Wilson P. A. Abnormalities of skeletal muscle in patients with chronic heart failure. Int J Cardiol. 1988 Feb;18(2):187–195. doi: 10.1016/0167-5273(88)90164-7. [DOI] [PubMed] [Google Scholar]
- Mancini D. M., Ferraro N., Tuchler M., Chance B., Wilson J. R. Detection of abnormal calf muscle metabolism in patients with heart failure using phosphorus-31 nuclear magnetic resonance. Am J Cardiol. 1988 Dec 1;62(17):1234–1240. doi: 10.1016/0002-9149(88)90266-4. [DOI] [PubMed] [Google Scholar]
- Massie B. M., Conway M., Rajagopalan B., Yonge R., Frostick S., Ledingham J., Sleight P., Radda G. Skeletal muscle metabolism during exercise under ischemic conditions in congestive heart failure. Evidence for abnormalities unrelated to blood flow. Circulation. 1988 Aug;78(2):320–326. doi: 10.1161/01.cir.78.2.320. [DOI] [PubMed] [Google Scholar]
- Massie B. M., Conway M., Yonge R., Frostick S., Sleight P., Ledingham J., Radda G., Rajagopalan B. 31P nuclear magnetic resonance evidence of abnormal skeletal muscle metabolism in patients with congestive heart failure. Am J Cardiol. 1987 Aug 1;60(4):309–315. doi: 10.1016/0002-9149(87)90233-5. [DOI] [PubMed] [Google Scholar]
- Sullivan M. J., Green H. J., Cobb F. R. Altered skeletal muscle metabolic response to exercise in chronic heart failure. Relation to skeletal muscle aerobic enzyme activity. Circulation. 1991 Oct;84(4):1597–1607. doi: 10.1161/01.cir.84.4.1597. [DOI] [PubMed] [Google Scholar]
- Sullivan M. J., Green H. J., Cobb F. R. Skeletal muscle biochemistry and histology in ambulatory patients with long-term heart failure. Circulation. 1990 Feb;81(2):518–527. doi: 10.1161/01.cir.81.2.518. [DOI] [PubMed] [Google Scholar]
- Walsh J. T., Andrews R., Evans A., Cowley A. J. Failure of "effective" treatment for heart failure to improve normal customary activity. Br Heart J. 1995 Oct;74(4):373–376. doi: 10.1136/hrt.74.4.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wiener D. H., Fink L. I., Maris J., Jones R. A., Chance B., Wilson J. R. Abnormal skeletal muscle bioenergetics during exercise in patients with heart failure: role of reduced muscle blood flow. Circulation. 1986 Jun;73(6):1127–1136. doi: 10.1161/01.cir.73.6.1127. [DOI] [PubMed] [Google Scholar]
- Wilson J. R., Fink L., Maris J., Ferraro N., Power-Vanwart J., Eleff S., Chance B. Evaluation of energy metabolism in skeletal muscle of patients with heart failure with gated phosphorus-31 nuclear magnetic resonance. Circulation. 1985 Jan;71(1):57–62. doi: 10.1161/01.cir.71.1.57. [DOI] [PubMed] [Google Scholar]
- Wilson J. R., Martin J. L., Ferraro N., Weber K. T. Effect of hydralazine on perfusion and metabolism in the leg during upright bicycle exercise in patients with heart failure. Circulation. 1983 Aug;68(2):425–432. doi: 10.1161/01.cir.68.2.425. [DOI] [PubMed] [Google Scholar]
- Wilson J. R., Martin J. L., Schwartz D., Ferraro N. Exercise intolerance in patients with chronic heart failure: role of impaired nutritive flow to skeletal muscle. Circulation. 1984 Jun;69(6):1079–1087. doi: 10.1161/01.cir.69.6.1079. [DOI] [PubMed] [Google Scholar]
- Zelis R., Longhurst J., Capone R. J., Mason D. T. A comparison of regional blood flow and oxygen utilization during dynamic forearm exercise in normal subjects and patients with congestive heart failure. Circulation. 1974 Jul;50(1):137–143. doi: 10.1161/01.cir.50.1.137. [DOI] [PubMed] [Google Scholar]
