Abstract
Vasoactive intestinal peptide (VIP)-like immunoreactivity is present at low levels in the superior cervical ganglion of the adult rat, where immunostained neural processes, but only an occasional immunostained cell body, are found. However, when ganglia are maintained for 24 or 48 hr in organ culture, their content of VIP-like immunoreactivity increases 6- or 31-fold, respectively. When examined at 24 hr, the increase in VIP-like immunoreactivity is totally blocked by an inhibitor of RNA or protein synthesis. Many neuronal cell bodies and processes with immunoreactivity for VIP and the related peptide histidine isoleucine amide (PHI) are seen in cultured ganglia. In addition, VIP/PHI mRNA is abundant in cultured ganglia but only barely detectable in ganglia prior to culture. Under the same culture conditions, neuropeptide Y-like immunoreactivity increases to a small extent, and tyrosine hydroxylase activity and total ganglion protein remain unchanged. These results support the idea that adult sympathetic neurons exhibit plasticity in neuropeptide expression and that this plasticity, in the case of VIP, depends on changes in gene expression.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adler J. E., Black I. B. Plasticity of substance P in mature and aged sympathetic neurons in culture. Science. 1984 Sep 28;225(4669):1499–1500. doi: 10.1126/science.6206570. [DOI] [PubMed] [Google Scholar]
- Audigier S., Barberis C., Jard S. Vasoactive intestinal polypeptide increases inositol phospholipid breakdown in the rat superior cervical ganglion. Brain Res. 1986 Jun 25;376(2):363–367. doi: 10.1016/0006-8993(86)90200-3. [DOI] [PubMed] [Google Scholar]
- Baldwin C., Sasek C. A., Zigmond R. E. Evidence that some preganglionic sympathetic neurons in the rat contain vasoactive intestinal peptide- or peptide histidine isoleucine amide-like immunoreactivities. Neuroscience. 1991;40(1):175–184. doi: 10.1016/0306-4522(91)90183-o. [DOI] [PubMed] [Google Scholar]
- Brenneman D. E., Eiden L. E. Vasoactive intestinal peptide and electrical activity influence neuronal survival. Proc Natl Acad Sci U S A. 1986 Feb;83(4):1159–1162. doi: 10.1073/pnas.83.4.1159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cahill A. L., Perlman R. L. Phosphorylation of tyrosine hydroxylase in the superior cervical ganglion. Biochim Biophys Acta. 1984 Oct 12;805(2):217–226. doi: 10.1016/0167-4889(84)90171-x. [DOI] [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- Christofides N. D., Polak J. M., Bloom S. R. Studies on the distribution of PHI in mammals. Peptides. 1984 Mar-Apr;5(2):261–266. doi: 10.1016/0196-9781(84)90216-x. [DOI] [PubMed] [Google Scholar]
- Gozes I., Brenneman D. E. VIP: molecular biology and neurobiological function. Mol Neurobiol. 1989 Winter;3(4):201–236. doi: 10.1007/BF02740606. [DOI] [PubMed] [Google Scholar]
- Hayakawa Y., Obata K., Itoh N., Yanaihara N., Okamoto H. Cyclic AMP regulation of pro-vasoactive intestinal polypeptide/PHM-27 synthesis in human neuroblastoma cells. J Biol Chem. 1984 Jul 25;259(14):9207–9211. [PubMed] [Google Scholar]
- Ip N. Y., Baldwin C., Zigmond R. E. Regulation of the concentration of adenosine 3',5'-cyclic monophosphate and the activity of tyrosine hydroxylase in the rat superior cervical ganglion by three neuropeptides of the secretin family. J Neurosci. 1985 Jul;5(7):1947–1954. doi: 10.1523/JNEUROSCI.05-07-01947.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jensen R. T., Tatemoto K., Mutt V., Lemp G. F., Gardner J. D. Actions of a newly isolated intestinal peptide PHI on pancreatic acini. Am J Physiol. 1981 Dec;241(6):G498–G502. doi: 10.1152/ajpgi.1981.241.6.G498. [DOI] [PubMed] [Google Scholar]
- Johnson M. I., Ross C. D., Bunge R. P. Morphological and biochemical studies on the development of cholinergic properties in cultured sympathetic neurons. II. Dependence on postnatal age. J Cell Biol. 1980 Mar;84(3):692–704. doi: 10.1083/jcb.84.3.692. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaiser P. K., Lipton S. A. VIP-mediated increase in cAMP prevents tetrodotoxin-induced retinal ganglion cell death in vitro. Neuron. 1990 Sep;5(3):373–381. doi: 10.1016/0896-6273(90)90173-d. [DOI] [PubMed] [Google Scholar]
- Kawatani M., Rutigliano M., de Groat W. C. Depolarization and muscarinic excitation induced in a sympathetic ganglion by vasoactive intestinal polypeptide. Science. 1985 Aug 30;229(4716):879–881. doi: 10.1126/science.3895438. [DOI] [PubMed] [Google Scholar]
- Kessler J. A., Adler J. E., Bell W. O., Black I. B. Substance P and somatostatin metabolism in sympathetic and special sensory ganglia in vitro. Neuroscience. 1983 Jun;9(2):309–318. doi: 10.1016/0306-4522(83)90296-8. [DOI] [PubMed] [Google Scholar]
- Kessler J. A., Adler J. E., Bohn M. C., Black I. B. Substance P in principal sympathetic neurons: regulation by impulse activity. Science. 1981 Oct 16;214(4518):335–336. doi: 10.1126/science.6169153. [DOI] [PubMed] [Google Scholar]
- Kessler J. A., Black I. B. Regulation of substance P in adult rat sympathetic ganglia. Brain Res. 1982 Feb 18;234(1):182–187. doi: 10.1016/0006-8993(82)90485-1. [DOI] [PubMed] [Google Scholar]
- Kessler J. A., Black I. B. The role of axonal transport in the regulation of enzyme activity in sympathetic ganglia of adult rats. Brain Res. 1979 Aug 10;171(3):415–424. doi: 10.1016/0006-8993(79)91046-1. [DOI] [PubMed] [Google Scholar]
- Korsching S., Thoenen H. Treatment with 6-hydroxydopamine and colchicine decreases nerve growth factor levels in sympathetic ganglia and increases them in the corresponding target tissues. J Neurosci. 1985 Apr;5(4):1058–1061. doi: 10.1523/JNEUROSCI.05-04-01058.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lamperti E. D., Rosen K. M., Villa-Komaroff L. Characterization of the gene and messages for vasoactive intestinal polypeptide (VIP) in rat and mouse. Brain Res Mol Brain Res. 1991 Feb;9(3):217–231. doi: 10.1016/0169-328x(91)90005-i. [DOI] [PubMed] [Google Scholar]
- Lundberg J. M., Terenius L., Hökfelt T., Tatemoto K. Comparative immunohistochemical and biochemical analysis of pancreatic polypeptide-like peptides with special reference to presence of neuropeptide Y in central and peripheral neurons. J Neurosci. 1984 Sep;4(9):2376–2386. doi: 10.1523/JNEUROSCI.04-09-02376.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McGregor G. P., Gibson S. J., Sabate I. M., Blank M. A., Christofides N. D., Wall P. D., Polak J. M., Bloom S. R. Effect of peripheral nerve section and nerve crush on spinal cord neuropeptides in the rat; increased VIP and PHI in the dorsal horn. Neuroscience. 1984 Sep;13(1):207–216. doi: 10.1016/0306-4522(84)90270-7. [DOI] [PubMed] [Google Scholar]
- Nawa H., Patterson P. H. Separation and partial characterization of neuropeptide-inducing factors in heart cell conditioned medium. Neuron. 1990 Feb;4(2):269–277. doi: 10.1016/0896-6273(90)90101-k. [DOI] [PubMed] [Google Scholar]
- Nawa H., Sah D. W. Different biological activities in conditioned media control the expression of a variety of neuropeptides in cultured sympathetic neurons. Neuron. 1990 Feb;4(2):279–287. doi: 10.1016/0896-6273(90)90102-l. [DOI] [PubMed] [Google Scholar]
- Nielsch U., Keen P. Reciprocal regulation of tachykinin- and vasoactive intestinal peptide-gene expression in rat sensory neurones following cut and crush injury. Brain Res. 1989 Feb 27;481(1):25–30. doi: 10.1016/0006-8993(89)90481-2. [DOI] [PubMed] [Google Scholar]
- Njå A., Purves D. The effects of nerve growth factor and its antiserum on synapses in the superior cervical ganglion of the guinea-pig. J Physiol. 1978 Apr;277:53–75. [PMC free article] [PubMed] [Google Scholar]
- Noguchi K., Senba E., Morita Y., Sato M., Tohyama M. Prepro-VIP and preprotachykinin mRNAs in the rat dorsal root ganglion cells following peripheral axotomy. Brain Res Mol Brain Res. 1989 Dec;6(4):327–330. doi: 10.1016/0169-328x(89)90077-6. [DOI] [PubMed] [Google Scholar]
- Pincus D. W., DiCicco-Bloom E. M., Black I. B. Vasoactive intestinal peptide regulates mitosis, differentiation and survival of cultured sympathetic neuroblasts. Nature. 1990 Feb 8;343(6258):564–567. doi: 10.1038/343564a0. [DOI] [PubMed] [Google Scholar]
- Potter D. D., Landis S. C., Matsumoto S. G., Furshpan E. J. Synaptic functions in rat sympathetic neurons in microcultures. II. Adrenergic/cholinergic dual status and plasticity. J Neurosci. 1986 Apr;6(4):1080–1098. doi: 10.1523/JNEUROSCI.06-04-01080.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rao M. S., Landis S. C. Characterization of a target-derived neuronal cholinergic differentiation factor. Neuron. 1990 Dec;5(6):899–910. doi: 10.1016/0896-6273(90)90350-o. [DOI] [PubMed] [Google Scholar]
- Roach A., Adler J. E., Black I. B. Depolarizing influences regulate preprotachykinin mRNA in sympathetic neurons. Proc Natl Acad Sci U S A. 1987 Jul;84(14):5078–5081. doi: 10.1073/pnas.84.14.5078. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sasek C. A., Zigmond R. E. Localization of vasoactive intestinal peptide- and peptide histidine isoleucine amide-like immunoreactivities in the rat superior cervical ganglion and its nerve trunks. J Comp Neurol. 1989 Feb 22;280(4):522–532. doi: 10.1002/cne.902800403. [DOI] [PubMed] [Google Scholar]
- Segerson T. P., Lam K. S., Cacicedo L., Minamitani N., Fink J. S., Lechan R. M., Reichlin S. Thyroid hormone regulates vasoactive intestinal peptide (VIP) mRNA levels in the rat anterior pituitary gland. Endocrinology. 1989 Oct;125(4):2221–2223. doi: 10.1210/endo-125-4-2221. [DOI] [PubMed] [Google Scholar]
- Tatemoto K., Mutt V. Isolation and characterization of the intestinal peptide porcine PHI (PHI-27), a new member of the glucagon--secretin family. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6603–6607. doi: 10.1073/pnas.78.11.6603. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Volle R. L., Patterson B. A. Regulation of cyclic AMP accumulation in a rat sympathetic ganglion: effects of vasoactive intestinal polypeptide. J Neurochem. 1982 Oct;39(4):1195–1197. doi: 10.1111/j.1471-4159.1982.tb11516.x. [DOI] [PubMed] [Google Scholar]
- Zigmond R. E., Mackay A. V. Dissociation of stimulatory and synthetic phases in the induction of tyrosine hydroxylase. Nature. 1974 Jan 11;247(5436):112–113. doi: 10.1038/247112a0. [DOI] [PubMed] [Google Scholar]