Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 Mar 1;89(5):1671–1675. doi: 10.1073/pnas.89.5.1671

Evidence for a membrane defect in Alzheimer disease brain.

R M Nitsch 1, J K Blusztajn 1, A G Pittas 1, B E Slack 1, J H Growdon 1, R J Wurtman 1
PMCID: PMC48514  PMID: 1311847

Abstract

To determine whether neurodegeneration in Alzheimer disease brain is associated with degradation of structural cell membrane molecules, we measured tissue levels of the major membrane phospholipids and their metabolites in three cortical areas from postmortem brains of Alzheimer disease patients and matched controls. Among phospholipids, there was a significant (P less than 0.05) decrease in phosphatidylcholine and phosphatidylethanolamine. There were significant (P less than 0.05) decreases in the initial phospholipid precursors choline and ethanolamine and increases in the phospholipid deacylation product glycerophosphocholine. The ratios of glycerophosphocholine to choline and glycerophosphoethanolamine to ethanolamine were significantly increased in all examined Alzheimer disease brain regions. The activity of the glycerophosphocholine-degrading enzyme glycerophosphocholine choline-phosphodiesterase was normal in Alzheimer disease brain. There was a near stoichiometric relationship between the decrease in phospholipids and the increase of phospholipid catabolites. These data are consistent with increased membrane phospholipid degradation in Alzheimer disease brain. Similar phospholipid abnormalities were not detected in brains of patients with Huntington disease, Parkinson disease, or Down syndrome. We conclude that the phospholipid abnormalities described here are not an epiphenomenon of neurodegeneration and that they may be specific for the pathomechanism of Alzheimer disease.

Full text

PDF
1671

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blusztajn J. K., Lopez Gonzalez-Coviella I., Logue M., Growdon J. H., Wurtman R. J. Levels of phospholipid catabolic intermediates, glycerophosphocholine and glycerophosphoethanolamine, are elevated in brains of Alzheimer's disease but not of Down's syndrome patients. Brain Res. 1990 Dec 17;536(1-2):240–244. doi: 10.1016/0006-8993(90)90030-f. [DOI] [PubMed] [Google Scholar]
  2. Blusztajn J. K., Wurtman R. J. Choline and cholinergic neurons. Science. 1983 Aug 12;221(4611):614–620. doi: 10.1126/science.6867732. [DOI] [PubMed] [Google Scholar]
  3. Bárány M., Chang Y. C., Arús C., Rustan T., Frey W. H., 2nd Increased glycerol-3-phosphorylcholine in post-mortem Alzheimer's brain. Lancet. 1985 Mar 2;1(8427):517–517. doi: 10.1016/s0140-6736(85)92114-2. [DOI] [PubMed] [Google Scholar]
  4. Dyrks T., Weidemann A., Multhaup G., Salbaum J. M., Lemaire H. G., Kang J., Müller-Hill B., Masters C. L., Beyreuther K. Identification, transmembrane orientation and biogenesis of the amyloid A4 precursor of Alzheimer's disease. EMBO J. 1988 Apr;7(4):949–957. doi: 10.1002/j.1460-2075.1988.tb02900.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ellis W. G., McCulloch J. R., Corley C. L. Presenile dementia in Down's syndrome. Ultrastructural identity with Alzheimer's disease. Neurology. 1974 Feb;24(2):101–106. doi: 10.1212/wnl.24.2.101. [DOI] [PubMed] [Google Scholar]
  6. Ellison D. W., Beal M. F., Martin J. B. Phosphoethanolamine and ethanolamine are decreased in Alzheimer's disease and Huntington's disease. Brain Res. 1987 Aug 11;417(2):389–392. doi: 10.1016/0006-8993(87)90471-9. [DOI] [PubMed] [Google Scholar]
  7. Esch F. S., Keim P. S., Beattie E. C., Blacher R. W., Culwell A. R., Oltersdorf T., McClure D., Ward P. J. Cleavage of amyloid beta peptide during constitutive processing of its precursor. Science. 1990 Jun 1;248(4959):1122–1124. doi: 10.1126/science.2111583. [DOI] [PubMed] [Google Scholar]
  8. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  9. Godridge H., Reynolds G. P., Czudek C., Calcutt N. A., Benton M. Alzheimer-like neurotransmitter deficits in adult Down's syndrome brain tissue. J Neurol Neurosurg Psychiatry. 1987 Jun;50(6):775–778. doi: 10.1136/jnnp.50.6.775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Holbrook P. G., Wurtman R. J. Presence of base-exchange activity in rat brain nerve endings: dependence on soluble substrate concentrations and effect of cations. J Neurochem. 1988 Jan;50(1):156–162. doi: 10.1111/j.1471-4159.1988.tb13243.x. [DOI] [PubMed] [Google Scholar]
  11. KENNEDY E. P., WEISS S. B. The function of cytidine coenzymes in the biosynthesis of phospholipides. J Biol Chem. 1956 Sep;222(1):193–214. [PubMed] [Google Scholar]
  12. Kanfer J. N., McCartney D. G. Glycerophosphorylcholine phosphocholine phosphodiesterase activity of rat brain myelin. J Neurosci Res. 1989 Oct;24(2):231–240. doi: 10.1002/jnr.490240214. [DOI] [PubMed] [Google Scholar]
  13. Khachaturian Z. S. Diagnosis of Alzheimer's disease. Arch Neurol. 1985 Nov;42(11):1097–1105. doi: 10.1001/archneur.1985.04060100083029. [DOI] [PubMed] [Google Scholar]
  14. Labarca C., Paigen K. A simple, rapid, and sensitive DNA assay procedure. Anal Biochem. 1980 Mar 1;102(2):344–352. doi: 10.1016/0003-2697(80)90165-7. [DOI] [PubMed] [Google Scholar]
  15. Liscovitch M., Freese A., Blusztajn J. K., Wurtman R. J. High-performance liquid chromatography of water-soluble choline metabolites. Anal Biochem. 1985 Nov 15;151(1):182–187. doi: 10.1016/0003-2697(85)90069-7. [DOI] [PubMed] [Google Scholar]
  16. McKhann G., Drachman D., Folstein M., Katzman R., Price D., Stadlan E. M. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology. 1984 Jul;34(7):939–944. doi: 10.1212/wnl.34.7.939. [DOI] [PubMed] [Google Scholar]
  17. Miatto O., Gonzalez R. G., Buonanno F., Growdon J. H. In vitro 31P NMR spectroscopy detects altered phospholipid metabolism in Alzheimer's disease. Can J Neurol Sci. 1986 Nov;13(4 Suppl):535–539. doi: 10.1017/s0317167100037276. [DOI] [PubMed] [Google Scholar]
  18. Perry T. L., Yong V. W., Bergeron C., Hansen S., Jones K. Amino acids, glutathione, and glutathione transferase activity in the brains of patients with Alzheimer's disease. Ann Neurol. 1987 Apr;21(4):331–336. doi: 10.1002/ana.410210403. [DOI] [PubMed] [Google Scholar]
  19. Pettegrew J. W., Kopp S. J., Minshew N. J., Glonek T., Feliksik J. M., Tow J. P., Cohen M. M. 31P nuclear magnetic resonance studies of phosphoglyceride metabolism in developing and degenerating brain: preliminary observations. J Neuropathol Exp Neurol. 1987 Jul;46(4):419–430. doi: 10.1097/00005072-198707000-00002. [DOI] [PubMed] [Google Scholar]
  20. Pettegrew J. W., Moossy J., Withers G., McKeag D., Panchalingam K. 31P nuclear magnetic resonance study of the brain in Alzheimer's disease. J Neuropathol Exp Neurol. 1988 May;47(3):235–248. doi: 10.1097/00005072-198805000-00004. [DOI] [PubMed] [Google Scholar]
  21. Pettegrew J. W., Panchalingam K., Moossy J., Martinez J., Rao G., Boller F. Correlation of phosphorus-31 magnetic resonance spectroscopy and morphologic findings in Alzheimer's disease. Arch Neurol. 1988 Oct;45(10):1093–1096. doi: 10.1001/archneur.1988.00520340047010. [DOI] [PubMed] [Google Scholar]
  22. Podlisny M. B., Lee G., Selkoe D. J. Gene dosage of the amyloid beta precursor protein in Alzheimer's disease. Science. 1987 Oct 30;238(4827):669–671. doi: 10.1126/science.2960019. [DOI] [PubMed] [Google Scholar]
  23. Potter P. E., Meek J. L., Neff N. H. Acetylcholine and choline in neuronal tissue measured by HPLC with electrochemical detection. J Neurochem. 1983 Jul;41(1):188–194. doi: 10.1111/j.1471-4159.1983.tb13668.x. [DOI] [PubMed] [Google Scholar]
  24. Rumble B., Retallack R., Hilbich C., Simms G., Multhaup G., Martins R., Hockey A., Montgomery P., Beyreuther K., Masters C. L. Amyloid A4 protein and its precursor in Down's syndrome and Alzheimer's disease. N Engl J Med. 1989 Jun 1;320(22):1446–1452. doi: 10.1056/NEJM198906013202203. [DOI] [PubMed] [Google Scholar]
  25. Sisodia S. S., Koo E. H., Beyreuther K., Unterbeck A., Price D. L. Evidence that beta-amyloid protein in Alzheimer's disease is not derived by normal processing. Science. 1990 Apr 27;248(4954):492–495. doi: 10.1126/science.1691865. [DOI] [PubMed] [Google Scholar]
  26. St George-Hyslop P. H., Tanzi R. E., Polinsky R. J., Neve R. L., Pollen D., Drachman D., Growdon J., Cupples L. A., Nee L., Myers R. H. Absence of duplication of chromosome 21 genes in familial and sporadic Alzheimer's disease. Science. 1987 Oct 30;238(4827):664–666. doi: 10.1126/science.2890206. [DOI] [PubMed] [Google Scholar]
  27. Tanzi R. E., Bird E. D., Latt S. A., Neve R. L. The amyloid beta protein gene is not duplicated in brains from patients with Alzheimer's disease. Science. 1987 Oct 30;238(4827):666–669. doi: 10.1126/science.2890207. [DOI] [PubMed] [Google Scholar]
  28. Zeisel S. H. Formation of unesterified choline by rat brain. Biochim Biophys Acta. 1985 Jul 9;835(2):331–343. doi: 10.1016/0005-2760(85)90289-9. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES