Abstract
Bovine seminal ribonuclease, the only dimeric ribonuclease described thus far, is found to exist in two different quaternary structure forms. In one, the N-terminal segment (residues 1-17) of each subunit is interchanged with the remaining segment of the other subunit, whereas in the second, such interchange does not occur. Functionally, they differ in that the catalytic activity of the form with interchange can be modulated by the substrate, whereas the noninterchange form exhibits no cooperativity. Each form can convert into the other, up to an equilibrium ratio, which is that found for the isolated protein. The results of refolding experiments of unfolded protein chains suggest that also in vivo the form lacking interchange may be produced first and is then partially transformed into the other dimeric form until equilibrium is reached. Although the implications of these findings may not be immediately apparent, they are intriguing and may have an impact on the unusual noncatalytic actions of the protein, such as its selective cytotoxicity toward tumor cells, activated T cells, and differentiated male germ cells.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- CRESTFIELD A. M., STEIN W. H., MOORE S. Properties and conformation of the histidine residues at the active site of ribonuclease. J Biol Chem. 1963 Jul;238:2421–2428. [PubMed] [Google Scholar]
- Capasso S., Giordano F., Mattia C. A., Mazzarella L., Zagari A. Refinement of the structure of bovine seminal ribonuclease. Biopolymers. 1983 Jan;22(1):327–332. doi: 10.1002/bip.360220142. [DOI] [PubMed] [Google Scholar]
- Capasso S., Giordano F., Mazzarella L., Ripamonti A. Preliminary x-ray investigation of bovine seminal ribonuclease. J Mol Biol. 1972 Feb 28;64(1):311–312. doi: 10.1016/0022-2836(72)90339-7. [DOI] [PubMed] [Google Scholar]
- D'Alessio G., Di Donato A., Parente A., Piccoli R. Seminal RNase: a unique member of the ribonuclease superfamily. Trends Biochem Sci. 1991 Mar;16(3):104–106. doi: 10.1016/0968-0004(91)90042-t. [DOI] [PubMed] [Google Scholar]
- D'Alessio G., Floridi A., De Prisco R., Pignero A., Leone E. [Bull semen ribonucleases. 1. Purification and physico-chemical properties of the major component]. Eur J Biochem. 1972 Mar 27;26(2):153–161. doi: 10.1111/j.1432-1033.1972.tb01751.x. [DOI] [PubMed] [Google Scholar]
- D'Alessio G., Malorni M. C., Parente A. Dissociation of bovine seminal ribonuclease into catalytically active monomers by selective reduction and alkylation of the intersubunit disulfide bridges. Biochemistry. 1975 Mar 25;14(6):1116–1122. doi: 10.1021/bi00677a004. [DOI] [PubMed] [Google Scholar]
- Di Donato A., D'Alessio G. Interchain disulfide bridges in ribonuclease BS-1. Biochem Biophys Res Commun. 1973 Dec 10;55(3):919–928. doi: 10.1016/0006-291x(73)91231-x. [DOI] [PubMed] [Google Scholar]
- Donadio S., Tamburrini M., Di Donato A., Piccoli R., D'Alessio G. Site-directed alkylation and site-site interactions in bovine seminal ribonuclease. Eur J Biochem. 1986 Jun 16;157(3):475–480. doi: 10.1111/j.1432-1033.1986.tb09691.x. [DOI] [PubMed] [Google Scholar]
- Ford G. C., Eichele G., Jansonius J. N. Three-dimensional structure of a pyridoxal-phosphate-dependent enzyme, mitochondrial aspartate aminotransferase. Proc Natl Acad Sci U S A. 1980 May;77(5):2559–2563. doi: 10.1073/pnas.77.5.2559. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fruchter R. G., Crestfield A. M. On the structure of ribonuclease dimer. Isolation and identification of monomers derived from inactive carboxymethyl dimers. J Biol Chem. 1965 Oct;240(10):3875–3882. [PubMed] [Google Scholar]
- Krietsch W. K., Simm F. C., Hertenberger B., Kuntz G. W., Wachter E. Isolation of bovine seminal ribonuclease by affinity chromatography. Anal Biochem. 1983 Jan;128(1):213–216. doi: 10.1016/0003-2697(83)90366-4. [DOI] [PubMed] [Google Scholar]
- Parente A., D'Alessio G. Reacquisition of quaternary structure by fully reduced and denatured seminal ribonuclease. Eur J Biochem. 1985 Jun 3;149(2):381–387. doi: 10.1111/j.1432-1033.1985.tb08936.x. [DOI] [PubMed] [Google Scholar]
- Piccoli R., Di Donato A., D'Alessio G. Co-operativity in seminal ribonuclease function. Kinetic studies. Biochem J. 1988 Jul 15;253(2):329–336. doi: 10.1042/bj2530329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schulz G. E., Schirmer R. H., Sachsenheimer W., Pai E. F. The structure of the flavoenzyme glutathione reductase. Nature. 1978 May 11;273(5658):120–124. doi: 10.1038/273120a0. [DOI] [PubMed] [Google Scholar]
- Shaw P. J., Muirhead H. The active site of glucose phosphate isomerase. FEBS Lett. 1976 May 15;65(1):50–55. doi: 10.1016/0014-5793(76)80619-9. [DOI] [PubMed] [Google Scholar]
- Smith G. K., Schaffer S. W. Selective reduction of seminal ribonuclease by glutathione. Arch Biochem Biophys. 1979 Aug;196(1):102–108. doi: 10.1016/0003-9861(79)90556-3. [DOI] [PubMed] [Google Scholar]
- Tamburrini M., Piccoli R., De Prisco R., Di Donato A., D'Alessio G. Fast and high-yielding procedures for the isolation of bovine seminal RNAase. Ital J Biochem. 1986 Jan-Feb;35(1):22–32. [PubMed] [Google Scholar]
- Tamburrini M., Piccoli R., Picone D., Di Donato A., D'Alessio G. Dissociation and reconstitution of bovine seminal RNAase: construction of a hyperactive hybrid dimer. J Protein Chem. 1989 Dec;8(6):719–731. doi: 10.1007/BF01024897. [DOI] [PubMed] [Google Scholar]
- Wente S. R., Schachman H. K. Shared active sites in oligomeric enzymes: model studies with defective mutants of aspartate transcarbamoylase produced by site-directed mutagenesis. Proc Natl Acad Sci U S A. 1987 Jan;84(1):31–35. doi: 10.1073/pnas.84.1.31. [DOI] [PMC free article] [PubMed] [Google Scholar]