Abstract
Since ancient times, steganography, the art of concealing information, has largely relied on secret inks as a tool for hiding messages. However, as the methods for detecting these inks improved, the use of simple and accessible chemicals as a means to secure communication was practically abolished. Here, we describe a method that enables one to conceal multiple different messages within the emission spectra of a unimolecular fluorescent sensor. Similar to secret inks, this molecular-scale messaging sensor (m-SMS) can be hidden on regular paper and the messages can be encoded or decoded within seconds using common chemicals, including commercial ingredients that can be obtained in grocery stores or pharmacies. Unlike with invisible inks, however, uncovering these messages by an unauthorized user is almost impossible because they are protected by three different defence mechanisms: steganography, cryptography and by entering a password, which are used to hide, encrypt or prevent access to the information, respectively.
Although historically common chemicals were frequently used as secret inks, the ease of readout could not prevent unauthorized reading. Here, the authors report a multi-analyte sensor that can conceal and encrypt messages by responding to simple chemicals, demonstrating a chemical means to secure communication.
Nowadays, the use of invisible inks to write messages, which can be revealed only when exposed to heat, light or a chemical solution, is mostly associated with children's games. However, only a century ago exceptionally simple chemicals were frequently used in times of war for espionage purposes1,2. The main advantage of using these inks was their accessibility to field agents, which enabled straightforward writing and reading of confidential information3. However, one drawback of using this technology is the ease by which messages can be exposed, which has led, for example, to the capture of the ‘lemon juice spies' in World War I (WWI)1. A significant improvement in the ability to secure information by chemical means has been achieved with the development of molecular and biomolecular steganographic systems, in which specific chemical stimuli trigger the appearance of text and images. These data can be created by various sources, such as fluorescent materials4,5,6,7,8,9,10,11,12, bacteria13, antibodies14, photonic crystals15, NMR chemical shifts16 and molecular computing systems17,18,19,20. Another important advantage of using molecular steganography systems, namely, their small scale, has also been demonstrated by the ability to conceal messages within individual DNA strands21. Finally, advances in the area of molecular logic gates22,23,24,25,26 have resulted in alternative methods of securing information22,27,28 by using multi-analyte fluorescent molecular sensors that can produce ID-codes29 or can authorize password entries30,31,32,33,34,35,36,37,38,39,40,41.
Herein we present a different approach to molecular information protection, which relies on the ability of a molecular-scale messaging sensor (m-SMS) to convert randomly selected chemical signals into unpredictable emission patterns and, in doing so, communicate short, chemically encoded messages with maximal security. This sensor is the second member of the combinatorial fluorescent molecular sensor family, developed by our group42, which mimics the function of the olfactory system by integrating several nonspecific signalling receptors on a single molecular platform43. Unlike its predecessor41,42,43, however, or any other fluorescent probe that responds to several analytes24,44 or an analyte group43, m-SMS was designed to operate as a universal sensor that can discriminate among a vast number of distinct chemical species. We show that this property not only distinguishes m-SMS from other types of fluorescent molecular sensors, but also from other chemical security systems4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41 by enabling it to function as a molecular cipher device that can convert distinct chemical structures into unique encryption keys. In this way, the system can be used not only to hide the data (steganography), but also to encrypt and decrypt it (cryptography), as well as provide password protection when a higher level of security is needed. Because this system does not depend on using specific chemical inputs, unique instrumentations or complex experimental protocols, it is also very simple to operate. We show that m-SMS and/or the chemical ingredients can be concealed and delivered on plain letter paper and that the messages can be rapidly revealed using a low-cost, handheld spectrometer. This makes the m-SMS technology similar to the ancient technology of invisible inks in terms of simplicity, accessibility and the ease by which different messages can be concealed and exposed using common chemicals from various locations and in a short time.
Results
Design principles
The structure of m-SMS (Fig. 1a) consists of a cis-amino proline scaffold that is appended with three spectrally overlapping fluorophores: fluorescein (Flu), sulforhodamine B and nile blue (NB), which serve as a fluorescence resonance energy transfer (FRET) donor1–acceptor1/donor2–acceptor2 system, respectively. In addition, the sensor consists of various recognition elements for binding distinct chemical species. The boronic acid and dipicolylamine (DPA) groups, for example, provide m-SMS with an affinity towards different saccharides45 and metal ions46, respectively. The thiourea and sulfonamide functionalities serve as additional metal ion-binding sites47,48,49, as well as anion50 receptors and hydrogen-bonding motifs51,52. Additional binding interactions may involve hydrogen bonding with the amides and carboxylic acid of m-SMS, in addition to hydrophobic interactions and π-stacking with the various aromatic groups. Finally, the Flu structure and protonation state are highly pH dependent53, whereas solvatochromic NB54 can interact with DNA and hydrophobic analytes (Fig. 1a). Additional recognition sites could also be formed upon the binding of analytes. DPA–metal ion complexes, for example, are known to interact with anions such as phosphates55, whereas deprotonation of Flu by a base should enable the phenolic ligand to coordinate with metal ions56. This versatility of artificial receptors is counter intuitive to traditional fluorescent molecular sensor design57, because it aims at creating a sensor that is inherently nonspecific. In this way, the binding of different analytes should induce the formation of distinct emission signatures by affecting FRET, photo-induced electron transfer, dye conjugation or charge transfer processes57. For example, the binding of metal ions to DPA could disrupt or enhance photo-induced electron transfer58, whereas changes in pH or solvents could alter Flu conjugation53 or intramolecular charge transfer processes within NB. In addition, because the different signalling and recognition elements are integrated on a single molecular platform, the interaction of m-SMS with any chemical species is likely to change the distance between the probes, which would affect the FRET efficiency. This covalent integration of dyes should also facilitate hiding, sending and extracting the molecular device without affecting the molar ratio between them and consequently, without changing the device's photophysical properties.
Multi-analyte identification
The unusual sensing mechanism underlying m-SMS was demonstrated by measuring its response to diverse chemical species (Fig. 1b) including different solvents (top left), metal ions (top right), saccharides (middle left), as well as its response to changing the pH (middle right) or polarity (bottom left) of the solution, and to the presence of complex mixtures such as those that can be found in soft drinks and medications (bottom right). Different emission signatures were also generated in the presence of different sugar phosphates, proteins and by changing analyte concentrations (Supplementary Figs 1 and 2). By analysing these patterns using linear discriminant analysis (LDA), which is an efficient pattern recognition algorithm for classifying unknown samples59, we could straightforwardly identify 45 representative analytes (Fig. 1c). Thirty-eight unknown samples that were randomly selected from the training set were identified by m-SMS with 97% accuracy.
Molecular cryptography
This ability of m-SMS to produce a wide range of nearly unpredictable emission fingerprints resembles the function of pseudo-random number generators, namely, cipher devices that can effectively encrypt text by associating each letter with an approximate random number. One of the most well-known pseudo-random number generator devices is the Enigma machine60,61, which was used by the Germans during World War II (WWII) to protect military communication. With the Enigma technology, the sender and receiver possessed identical cipher machines that were used to encrypt and decrypt the text, respectively. In addition, to prevent a third party with an identical machine from spying on these messages, the receiver must also have setup the correct initial state of his machine in order to obtain the right message. To elucidate the function of an Enigma-like molecular machine, we first show how m-SMS can be used to encrypt and decrypt a very simple text: ‘open sesame' (Fig. 2). Initially, the sender converts the text to numbers using a public alphanumeric code to obtain a numeric sequence (Fig. 2a). Note that this alphanumeric code does not need to be secure and can be used to write various other messages. In the next step, the sender dissolves m-SMS in a chosen solution (60 μl EtOH) to which 2 μl of a randomly selected chemical input (chemical x, 1 M NaHCO3) is added. A random encryption key is then generated by recording the emission every 20 nm and associating each value with the corresponding letter (Fig. 2b). The sender then adds this encryption key to the original message to afford an encrypted message (cipher text; Fig. 2c) that can be safely sent to a recipient with an identical molecular device. To obtain the original message, the receiver simply needs to generate the decryption key by setting up the correct initial state of the system (for example, sensor concentrations, solvents and detector gain), adding the same chemical input (Fig. 2d), and subtracting the resulting values from the cipher text (Fig. 2e).
Figure 3 shows how longer messages can be encrypted by sequentially adding chemical inputs. For clarity, messages encrypted by two inputs are presented. The text ‘Pershing sails from NY June 1' was selected for this experiment because, in the context of hidden messages, this is a well-known message that was written by a spy during WWII.2 Hence, with this message, we intend to highlight the analogy between m-SMS and the simplest stereographic technologies in terms of the ease by which messages can be concealed and exposed by untrained users. In Fig. 3a, the encryption key was generated by first adding NaOH (0.2 M), then CuCl2 (0.3 mM) and recording the emission following each addition. In Fig. 3b, the inputs were changed to NaOH (0.35 M) and eyedrop, which demonstrate the feasibility of encrypting messages with commercially available chemicals. Pharmaceutical liquids are very suitable for this application owing to their high purity and batch-to-batch reproducibility, which enable the sender and receiver to use them as is without performing additional procedures. Figure 3c shows how an entirely different encryption key can be generated with the same inputs used in the first experiment (Fig. 3a, NaOH and CuCl2), but changing the solvent to acetonitrile and the concentrations of the molecular components to 5 μM m-SMS, 0.35 M NaOH and 0.3 M CuCl2. Owing to the stronger intensity of the NB dye under hydrophobic conditions, the message could be encrypted in a single emission spectrum, which was obtained after the second addition step. This last experiment (Fig. 3c) thus demonstrates the importance of correctly setting up the initial state of the system, which is a fundamental principle underlying the operation of Enigma machines61. Following these test cases, 12 different users, including 10 untrained users, were requested to decrypt different messages (2–19 words) by using different chemical inputs (Fig. 3d and Supplementary Table 1). The fact that all messages were successfully decrypted confirmed the simplicity, versatility and reliability of this technique.
Molecular password protection
Despite the fact that cryptography makes m-SMS far more secure than secret inks, there is always the possibility that the enemy would obtain the sensor and the correct chemical inputs, and would attempt to recreate the encryption key using a ‘brute force search'2. Namely, it would measure the response of m-SMS to different concentrations and combinations of these inputs until meaningful text would result from this screening. Figure 4 shows a means for complicating such efforts by entering a password as an additional layer of defence. This approach exploits the principles of molecular keypad lock technology30,31,32,33,34,35,36,37,38,39,40,41, which largely rely on the tendency of multivalent host–guest complexes and multicomponent assemblies to be entrapped in local minima41. We selected ZnCl2 (1), Na3PO4 (2) and NaOH (3) as representative entry keys owing to the strong interaction of Zn(II) with DPA ligands55,56, as well as with NaOH or Na3PO4 to yield Zn(OH)2 and zinc phosphate complexes, respectively62. Hence, when ZnCl2 is initially added, Zn(II) should readily coordinate to the DPA unit of m-SMS. In contrast, when ZnCl2 is added second, the reaction with an excess of Na3PO4 or NaOH in solution should reduce the concentration of free Zn(II) ions and consequently, the amount of the m-SMS-Zn(II) complex. Figure 4a exemplifies how m-SMS can be used to generate four different encryption keys using two-digit chemical passwords: 11, 22, 12 and 21. With three chemical inputs, additional metastable complexes can be formed, which enabled us to identify 9 unique passwords from the 27 possible combinations (Fig. 4b). The relevance of the keypad lock technique to cryptographic applications was demonstrated by providing nine different recipients with the same chemical inputs (1, 2 and 3), but with distinct individual passwords. As shown in Fig. 4c, only the receiver with the right password could successfully identify the message, whereas the other users only obtained random text.
Molecular steganography
Steganography is the third layer of protection that can be implemented by concealing low quantities of m-SMS on regular paper (Fig. 5). This not only complicates its detection, but also its characterization, which would be needed if an enemy attempts to reproduce the molecular device. Figure 5 depicts a representative experiment in which 1.1 μl of m-SMS was dried on plain letter paper (Fig. 5a) and sent to a second recipient by regular postal services. In this experiment, the letter was printed with a standard printer and the sensor was hidden on a random spot within the logo of the Weizmann Institute (Fig. 5a). To clarify, the text within this letter does not contain any valuable information, but rather, the message is concealed within the emission spectra of m-SMS, which can only be generated by setting up the appropriate conditions. To reveal the message, the receiver merely needs to extract m-SMS from the letter by cutting the logo, incubating it in an appropriate solution, and use this solution to record the fluorescence spectra (Fig. 5b). By setting up the correct initial emission intensity (Fig. 5c, top spectrum) and sequentially adding the right chemical inputs (Fig. 5c, inputs 1–3), the receiver could successfully identify various different messages, such as the one presented in Fig. 5d: ‘Hostile column of infantry observed. Extends from the south exit of Bear Woods to position 3 kilometers east of Neustadt', a message that was encrypted by the original Enigma machine.
Versatility of the m-SMS technology
Similar procedures, in which chemical inputs were concealed on letter paper, were also performed (Supplementary Fig. 3), demonstrating an alternative means of hiding and delivering molecular components. In these experiments, chemical inputs with measurable absorption spectra such as CoCl2 (Supplementary Fig. 3b,c) were extracted from the paper and, after determining their concentrations, were added to m-SMS. In addition to commercial chemicals, we also encrypted messages using unique inputs made in our laboratory63, which shows how messages can be further protected by using synthetic compounds that are difficult to characterize and reproduce (Supplementary Fig. 3a and Supplementary Tables 1 and 2). Finally, to demonstrate that this technology is not limited to particular locations or a specific sensor, we encoded and decoded messages outside the laboratory using a low-cost hand-held spectrofluorometer (Fig. 6a and Supplementary Fig. 4) and we also synthesized a second m-SMS molecule (Fig. 6b, m-SMS2) integrating coumarin and a pH-sensitive Flu probe, as well as a cyclen ligand that can bind various metal ions. Hence, similar to m-SMS (Fig. 1a), m-SMS2 (Fig. 6b) should be able to respond to metal ions, acids and bases. However, it should produce different emission patterns owing to the shorter excitation and emission wavelength of the FRET donor (that is, coumarin), as well as the distinct affinity of cyclen and DPA towards different metal ions. To demonstrate that this new molecular cipher device can generate entirely different encryption keys, the message ‘secret agent uncovered initiate rescue action' was encrypted by recording the emission of m-SMS2 before and after adding 16 mM acetic acid. We then attempted to decrypt the resulting cipher text by using both m-SMS2 and the original m-SMS. As shown in Fig. 6c, although the same chemical inputs were used, only the first molecular device successfully decrypted the messages. The second device generated a meaningless text. This last experiment thus shows that even if a third party manages to reproduce m-SMS and spy on the experimental settings, a new cipher device can be readily created by replacing one or several receptors, linkers or dyes.
Discussion
Given recent concerns regarding global electronic surveillance64, the ability of m-SMS to convert different chemical structures into unique emission patterns demonstrates a potential means to bypass using electronic communication systems and thereby ensure that important messages are secure. Interestingly, even this first prototype provides a very high security level owing to its ability to generate numerous unpredictable encryption keys (cryptography), as well as the difficulty of finding and characterizing the molecular device and/or chemical inputs (steganography), and in particular cases, the order by which the inputs are introduced (password protection). In addition, as with Enigma cryptographic systems, to break such a defence one also needs to set up the correct initial state of the system, which can be determined by the type of solvents and concentrations used, as well as by the instrumentation setup. We can estimate, for example, the maximal number of patterns that can be generated by using six different concentrations of m-SMS (Supplementary Fig. 2a) at six different pH values (Supplementary Fig. 2b) and upon the addition of six different concentrations of copper ions (Supplementary Fig. 2c). By setting the detector to six different ‘gain' values (Supplementary Fig. 2d), even a single chemical input (that is, CuCl2), out of the numerous chemicals that can be discriminated by m-SMS (Fig. 1b), should afford a maximal number of 64=1,296 encryption keys. Improving the performance of such systems should be readily achieved by increasing the number of recognition and signalling elements, which would maximize the number of analytes that can be discriminated by a unimolecular cipher device. Other important features of this technology, namely, its versatility and simplicity, have also been demonstrated by creating different m-SMS devices, encrypting messages with a wide range of randomly selected chemicals, as well as by hiding the molecular components on plain paper and sending them by regular mail, akin to invisible inks. Considering the unlimited number of chemical structures that can, in principle, be used as inputs, this work indicates that a unique message could be hidden within each and every molecule around us.
Methods
Synthesis and characterization of m-SMS and m-SMS2
Detailed synthesis and characterization of the m-SMSs are available in the Supplementary Methods.
Multi-analyte sensing
Different analytes and their combinations were identified by adding them to m-SMS (500 nM) in an ethanol solution containing 10 mM of AcOH (EtOH-AcOH). In a typical experiment, a chemical input (2 μl) was added to 60 μl of m-SMS in EtOH-AcOH and the emission pattern was recorded by a BioTek synergy H4 hybrid multi-mode microplate reader (BioTek, Inc.) using black flat-bottom polystyrene 384-well microplates (Corning). This process was performed in four replicates and emission intensity values obtained at 520, 580 and 654 nm were analysed by LDA using XLSTAT version 2014.1.01. LDA reduces the dimensionality of the data into two canonical factors (F1 and F2), which enables classifying unknown samples according to the proximity of the data points (F1, F2) to the clusters obtained by the training set.
Encryption and decryption of messages
Messages were ciphered and deciphered by adding one or several chemical inputs to m-SMS or m-SMS2 and recording the emission spectra with a BioTek synergy H4 hybrid multi-mode microplate reader or by using a portable SpectroVis Plus spectrophotometer (Vernier) connected to a laptop computer equipped with LoggerPro software. The intensity and shape of the spectral patterns, which provide the encryption/decryption keys, were varied by changing the chemical inputs and their concentrations, as well as by altering the initial state of the system. For example, different fluorescence fingerprints were readily obtained by changing the solvent, pH, photomultiplier gain (current amplification), sensor concentration and by combing of these parameters. In a typical experiment, generally, the encryption and decryption keys were generated by dissolving the molecular sensor (500 nM) in 60 μl EtOH or EtOH-AcOH (10 mM), adding 1–2 μl of chemical inputs, and recording the emission intensity values every 4–15 nm. This experiment was performed in triplicate. Steganographic protection was achieved by pipetting 1–2 μl of m-SMS or chemical inputs such as CoCl2 on the Weizmann Institute logo. The logo was printed on plain A4 paper by a standard HP colour LaserJet printer (M651). CoCl2 was extracted from the paper with 300 μl of water and its concentration was determined according to its extinction coefficient (ɛ510 nm=4.85 M−1 cm−1).
Additional information
How to cite this article: Sarkar, T. et al. Message in a molecule. Nat. Commun. 7:11374 doi: 10.1038/ncomms11374 (2016).
Supplementary Material
Acknowledgments
This research was supported by the European Research Council Starting Grant 338265.
Footnotes
Author contributions T.S. and K.S. are equally contributed to this work. T.S., K.S., L.M. and D.M. designed the research; T.S. and K.S. synthesized the sensors, performed the experiments and analysed the data. L.M. and D.M. interpreted the data, wrote the manuscript and all the authors read and commented on the paper.
References
- Macrakis K. Prisoners, Lovers, and Spies: The Story of Invisible Ink from Herodotus to al-Qaeda Yale Univ. (2015). [Google Scholar]
- Jamil T. Steganography: the art of hiding information in plain sight. IEEE Potentials 18, 10–12 (1999). [Google Scholar]
- Macrakis K., Bell E. K., Perry D. L. & Sweeder R. D. Invisible ink revealed: concept, context, and chemical principles of ‘cold war' writing. J. Chem. Edu. 89, 529–532 (2012). [Google Scholar]
- Kishimura A., Yamashita T., Yamaguchi K. & Aida T. Rewritable phosphorescent paper by the control of competing kinetic and thermodynamic self-assembling events. Nat. Mater. 4, 546–549 (2005). [DOI] [PubMed] [Google Scholar]
- Mutai T., Satou H. & Araki K. Reproducible on-off switching of solid-state luminescence by controlling molecular packing through heat-mode interconversion. Nat. Mater. 4, 685–687 (2005). [DOI] [PubMed] [Google Scholar]
- Perruchas S. et al. Mechanochromic and thermochromic luminescence of a copper iodide cluster. J. Am. Chem. Soc. 132, 10967–10969 (2010). [DOI] [PubMed] [Google Scholar]
- Yoon S.-J. et al. Multistimuli two-color luminescence switching via different slip-stacking of highly fluorescent molecular sheets. J. Am. Chem. Soc. 132, 13675–13683 (2010). [DOI] [PubMed] [Google Scholar]
- Yan D. et al. Reversibly thermochromic, fluorescent ultrathin films with a supramolecular architecture. Angew. Chem. Int. Ed. 50, 720–723 (2011). [DOI] [PubMed] [Google Scholar]
- Li K. et al. Reversible photochromic system based on rhodamine B salicylaldehyde hydrazone metal complex. J. Am. Chem. Soc. 136, 1643–1649 (2014). [DOI] [PubMed] [Google Scholar]
- Sun H. et al. Smart responsive phosphorescent materials for data recording and security protection. Nat. Commun. 5, 3601 (2014). [DOI] [PubMed] [Google Scholar]
- Wu Y. et al. Quantitative photoswitching in bis(dithiazole)ethene enables modulation of light for encoding optical signals. Angew. Chem. Int. Ed. 53, 2090–2094 (2014). [DOI] [PubMed] [Google Scholar]
- Hou X. et al. Tunable solid-state fluorescent materials for supramolecular encryption. Nat. Commun. 6, 6884–6892 (2015). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palacios M. A. et al. InfoBiology by printed arrays of microorganism colonies for timed and on-demand release of messages. Proc. Natl Acad. Sci. USA 108, 16510–16514 (2011). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim K.-W., Bocharova V., Halámek J., Oh M.-K. & Katz E. Steganography and encrypting based on immunochemical systems. Biotechnol. Bioeng. 108, 1100–1107 (2011). [DOI] [PubMed] [Google Scholar]
- Burgess I. B. et al. Encoding complex wettability patterns in chemically functionalized 3D photonic crystals. J. Am. Chem. Soc. 133, 12430–12432 (2011). [DOI] [PubMed] [Google Scholar]
- Ratner T., Reany O. & Keinan E. Encoding and processing of alphanumeric information by chemical mixtures. ChemPhysChem 10, 3303–3309 (2009). [DOI] [PubMed] [Google Scholar]
- Shoshani S., Piran R., Arava Y. & Keinan E. A molecular cryptosystem for images by DNA computing. Angew. Chem. Int. Ed. 51, 2883–2887 (2012). [DOI] [PubMed] [Google Scholar]
- Poje J. E. et al. Visual displays that directly interface and provide read-outs of molecular states via molecular graphics processing units. Angew. Chem. Int. Ed. 53, 9222–9225 (2014). [DOI] [PubMed] [Google Scholar]
- Ling J., Naren G., Kelly J., Moody T. S. & de Silva A. P. Building pH sensors into paper-based small-molecular logic systems for very simple detection of edges of objects. J. Am. Chem. Soc. 137, 3763–3766 (2015). [DOI] [PubMed] [Google Scholar]
- Ling J., Naren G., Kelly J., Fox D. B. & de Silva A. P. Small molecular logic systems can draw the outlines of objects via edge visualization. Chem. Sci. 6, 4472–4478 (2015). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clelland C. T., Risca V. & Bancroft C. Hiding messages in DNA microdots. Nature 399, 533–534 (1999). [DOI] [PubMed] [Google Scholar]
- de Silva A. P. Molecular Logic-Based Computation Royal Society of Chemistry (2012). [Google Scholar]
- Andreasson J. & Pischel U. Molecules with a sense of logic: a progress report. Chem. Soc. Rev. 44, 1053–1069 (2015). [DOI] [PubMed] [Google Scholar]
- de Silva A. P. & Uchiyama S. Molecular logic and computing. Nat. Nanotechnol. 2, 399–410 (2007). [DOI] [PubMed] [Google Scholar]
- Szaciłowski K. Infochemistry Wiley (2013). [Google Scholar]
- Baroncini M., Semeraro M. & Credi A. Processing chemical and photonic signals by artificial multicomponent molecular systems. Isr. J. Chem. 51, 23–35 (2011). [Google Scholar]
- Credi A. Molecules that make decisions. Angew. Chem. Int. Ed. 46, 5472–5475 (2007). [DOI] [PubMed] [Google Scholar]
- Strack G., Luckarift H. R., Johnson G. R. & Katz E. in Biomolecular Information Processing 103–116Wiley-VCH Verlag GmbH & Co. KGaA (2012). [Google Scholar]
- de Silva A. P., James M. R., McKinney B. O.F., Pears D. A. & Weir S. M. Molecular computational elements encode large populations of small objects. Nat. Mater. 5, 787–789 (2006). [DOI] [PubMed] [Google Scholar]
- Margulies D., Felder C. E., Melman G. & Shanzer A. A molecular keypad lock: a photochemical device capable of authorizing password entries. J. Am. Chem. Soc. 129, 347–354 (2007). [DOI] [PubMed] [Google Scholar]
- Guo Z., Zhu W., Shen L. & Tian H. A fluorophore capable of crossword puzzles and logic memory. Angew. Chem. Int. Ed. 46, 5549–5553 (2007). [DOI] [PubMed] [Google Scholar]
- Strack G., Ornatska M., Pita M. & Katz E. Biocomputing security system: concatenated enzyme-based logic gates operating as a biomolecular keypad lock. J. Am. Chem. Soc. 130, 4234–4235 (2008). [DOI] [PubMed] [Google Scholar]
- Sun W., Xu C.-H., Zhu Z., Fang C.-J. & Yan C.-H. Chemical-driven reconfigurable arithmetic functionalities within a fluorescent tetrathiafulvalene derivative. J. Phys. Chem. C 112, 16973–16983 (2008). [Google Scholar]
- Andréasson J., Straight S. D., Moore T. A., Moore A. L. & Gust D. An all-photonic molecular keypad lock. Chem. Eur. J 15, 3936–3939 (2009). [DOI] [PubMed] [Google Scholar]
- Halámek J., Tam T. K., Chinnapareddy S., Bocharova V. & Katz E. Keypad lock security system based on immune-affinity recognition integrated with a switchable biofuel cell. J. Phys.Chem. Lett. 1, 973–977 (2010). [Google Scholar]
- Andréasson J. et al. All-photonic multifunctional molecular logic device. J. Am. Chem. Soc. 133, 11641–11648 (2011). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu Y. et al. An aptamer-based keypad lock system. Chem. Commun. 48, 802–804 (2012). [DOI] [PubMed] [Google Scholar]
- Jiang X.-J. & Ng D. K.P. Sequential logic operations with a molecular keypad lock with four inputs and dual fluorescence outputs. Angew. Chem. Int. Ed. 53, 10481–10484 (2014). [DOI] [PubMed] [Google Scholar]
- Carvalho C. P., Dominguez Z., Da Silva J. P. & Pischel U. A supramolecular keypad lock. Chem. Commun. 51, 2698–2701 (2015). [DOI] [PubMed] [Google Scholar]
- Chen J., Zhou S. & Wen J. Concatenated logic circuits based on a three-way DNA junction: a keypad-lock security system with visible readout and an automatic reset function. Angew. Chem. Int. Ed. 54, 446–450 (2015). [DOI] [PubMed] [Google Scholar]
- Rout B., Milko P., Iron M. A., Motiei L. & Margulies D. Authorizing multiple chemical passwords by a combinatorial molecular keypad lock. J. Am. Chem. Soc. 135, 15330–15333 (2013). [DOI] [PubMed] [Google Scholar]
- Rout B., Unger L., Armony G., Iron M. A. & Margulies D. Medication detection by a combinatorial fluorescent molecular sensor. Angew. Chem. Int. Ed. 51, 12477–12481 (2012). [DOI] [PubMed] [Google Scholar]
- Rout B., Motiei L. & Margulies D. Combinatorial fluorescent molecular sensors: the road to differential sensing at the molecular level. Synlett 25, 1050–1054 (2014). [Google Scholar]
- Chen K., Shu Q. & Schmittel M. Design strategies for lab-on-a-molecule probes and orthogonal sensing. Chem. Soc. Rev. 44, 136–160 (2015). [DOI] [PubMed] [Google Scholar]
- Wu X. et al. Selective sensing of saccharides using simple boronic acids and their aggregates. Chem. Soc. Rev. 42, 8032–8048 (2013). [DOI] [PubMed] [Google Scholar]
- Götzke L. et al. Nickel(II) and zinc(II) complexes of N-substituted di(2-picolyl)amine derivatives: Synthetic and structural studies. Polyhedron 30, 708–714 (2011). [Google Scholar]
- Abhayawardhana P. L., Marzilli P. A., Fronczek F. R. & Marzilli L. G. Complexes possessing rare ‘tertiary' sulfonamide nitrogen-to-metal bonds of normal length: fac-[Re(CO)3(N(SO2R)dien)]PF6 complexes with hydrophilic sulfonamide ligands. Inorg. Chem. 53, 1144–1155 (2014). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chohan Z. H. et al. Sulfonamide–metal complexes endowed with potent anti-Trypanosoma cruzi activity. J. Enzyme Inhib. Med. Chem. 29, 230–236 (2014). [DOI] [PubMed] [Google Scholar]
- Vonlanthen M., Connelly C. M., Deiters A., Linden A. & Finney N. S. Thiourea-based fluorescent chemosensors for aqueous metal ion detection and cellular imaging. J. Org. Chem. 79, 6054–6060 (2014). [DOI] [PubMed] [Google Scholar]
- Beer P. D. & Gale P. A. Anion recognition and sensing: the state of the art and future perspectives. Angew. Chem. Int. Ed. 40, 486–516 (2001). [PubMed] [Google Scholar]
- Custelcean R. Crystal engineering with urea and thiourea hydrogen-bonding groups. Chem. Commun. 21, 295–307 (2008). [DOI] [PubMed] [Google Scholar]
- Adsmond D. A. & Grant D. J.W. Hydrogen bonding in sulfonamides. J. Pharm. Sci. 90, 2058–2077 (2001). [DOI] [PubMed] [Google Scholar]
- Sjöback R., Nygren J. & Kubista M. Absorption and fluorescence properties of fluorescein. Spectrochim. Acta A Mol. Biomol. Spectrosc. 51, L7–L21 (1995). [Google Scholar]
- Jose J. & Burgess K. Benzophenoxazine-based fluorescent dyes for labeling biomolecules. Tetrahedron 62, 11021–11037 (2006). [Google Scholar]
- Sakamoto T., Ojida A. & Hamachi I. Molecular recognition, fluorescence sensing, and biological assay of phosphate anion derivatives using artificial Zn(ii)-Dpa complexes. Chem. Commun. 141–152 (2009). [DOI] [PubMed] [Google Scholar]
- Chang C. J. et al. Bright fluorescent chemosensor platforms for imaging endogenous pools of neuronal zinc. Chem. Biol. 11, 203–210 (2004). [DOI] [PubMed] [Google Scholar]
- de Silva A. P. et al. Signaling recognition events with fluorescent sensors and switches. Chem. Rev. 97, 1515–1566 (1997). [DOI] [PubMed] [Google Scholar]
- de Silva A. P., Moody T. S. & Wright G. D. Fluorescent PET (photoinduced electron transfer) sensors as potent analytical tools. Analyst 134, 2385–2393 (2009). [DOI] [PubMed] [Google Scholar]
- Anslyn E. V. Supramolecular analytical chemistry. J. Org. Chem. 72, 687–699 (2007). [DOI] [PubMed] [Google Scholar]
- Lloyd S. Quantum Engima machines. arXiv:1307.0380 (2013).
- Sebag-Montefiore H. Enigma: the Battle for the Code Wiley (2004). [Google Scholar]
- Peng X., Xu Y., Sun S., Wu Y. & Fan J. A ratiometric fluorescent sensor for phosphates: Zn2+-enhanced ICT and ligand competition. Org. Biomol. Chem. 5, 226–228 (2007). [DOI] [PubMed] [Google Scholar]
- Selvakumar K., Motiei L. & Margulies D. Enzyme−artificial enzyme interactions as a means for discriminating among structurally similar isozymes. J. Am. Chem. Soc. 137, 4892–4895 (2015). [DOI] [PubMed] [Google Scholar]
- Macrakis K. Supervision: an introduction to the surveillance society by John Gilliom and Torin Monahan. Technol. Cult. 55, 515–516 (2014). [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.