Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 1995 Aug;59(2):152–159. doi: 10.1136/jnnp.59.2.152

Diagnostic value of paraclinical tests in multiple sclerosis: relative sensitivities and specificities for reclassification according to the Poser committee criteria.

S Beer 1, K M Rösler 1, C W Hess 1
PMCID: PMC485990  PMID: 7629529

Abstract

The yield of paraclinical tests was evaluated in a prospective study of 189 consecutive patients referred for suspected multiple sclerosis (142 patients with multiple sclerosis, 47 non-multiple sclerosis patients on discharge). Patients were first classified according to the Poser criteria by the clinical findings. Subsequently, the results of paraclinical tests (cranial MRI, visually evoked potentials (VEPs), somatosensory evoked potentials by tibial nerve stimulation (SSEPs), motor evoked potentials (MEPs), and analysis of CSF for oligoclonal banding and IgG-index (CSF)) were taken into account. The percentage of reclassified patients (reclassification sensitivity, RS) was always lower than the percentage of abnormal results (diagnostic sensitivity, DS), and the divergence of RS v DS differed between the tests (60% v 84% in MRI, 31% v 77% in CSF, 29% v 37% in VEPs, 20% v 68% in MEPs, and 12% v 46% in SSEPs respectively). False reclassifications of non-multiple sclerosis patients to multiple sclerosis would have occurred with all tests (MRI: six of 47 patients, (reclassification specificity 88%); CSF: one (98%); VEPs: two (96%); MEPs: two (96%); SSEPs: four (91%); P < 0.05). Although MRI had superior diagnostic capacity, 57 of the 142 patients with multiple sclerosis were not reclassified by the MRI result, 12 of whom were reclassified by CSF and 18 by one of the evoked potential (EP) studies. Of the 98 patients not reclassified by CSF, 53 were reclassified by MRI and 39 by EPs. The results suggest that for the evaluation of paraclinical tests in suspected multiple sclerosis, comparison of diagnostic sensitivities is inappropriate. In general, a cranial MRI contributes most to the diagnosis; however, due to its comparatively low specificity and its considerable number of negative results, EP or CSF studies are often useful to establish the diagnosis of multiple sclerosis.

Full text

PDF
152

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baumhefner R. W., Tourtellotte W. W., Syndulko K., Waluch V., Ellison G. W., Meyers L. W., Cohen S. N., Osborne M., Shapshak P. Quantitative multiple sclerosis plaque assessment with magnetic resonance imaging. Its correlation with clinical parameters, evoked potentials, and intra-blood-brain barrier IgG synthesis. Arch Neurol. 1990 Jan;47(1):19–26. doi: 10.1001/archneur.1990.00530010027014. [DOI] [PubMed] [Google Scholar]
  2. Chiappa K. H. Pattern shift visual, brainstem auditory, and short-latency somatosensory evoked potentials in multiple sclerosis. Neurology. 1980 Jul;30(7 Pt 2):110–123. doi: 10.1212/wnl.30.7_part_2.110. [DOI] [PubMed] [Google Scholar]
  3. Comi G., Martinelli V., Medaglini S., Locatelli T., Filippi M., Canal N., Triulzi F., Del Maschio A. Correlation between multimodal evoked potentials and magnetic resonance imaging in multiple sclerosis. J Neurol. 1989 Jan;236(1):4–8. doi: 10.1007/BF00314209. [DOI] [PubMed] [Google Scholar]
  4. Cutler J. R., Aminoff M. J., Brant-Zawadzki M. Evaluation of patients with multiple sclerosis by evoked potentials and magnetic resonance imaging: a comparative study. Ann Neurol. 1986 Nov;20(5):645–648. doi: 10.1002/ana.410200518. [DOI] [PubMed] [Google Scholar]
  5. Eisen A. A., Shtybel W. AAEM minimonograph #35: Clinical experience with transcranial magnetic stimulation. Muscle Nerve. 1990 Nov;13(11):995–1011. doi: 10.1002/mus.880131102. [DOI] [PubMed] [Google Scholar]
  6. Farlow M. R., Markand O. N., Edwards M. K., Stevens J. C., Kolar O. J. Multiple sclerosis: magnetic resonance imaging, evoked responses, and spinal fluid electrophoresis. Neurology. 1986 Jun;36(6):828–831. doi: 10.1212/wnl.36.6.828. [DOI] [PubMed] [Google Scholar]
  7. Fazekas F., Offenbacher H., Fuchs S., Schmidt R., Niederkorn K., Horner S., Lechner H. Criteria for an increased specificity of MRI interpretation in elderly subjects with suspected multiple sclerosis. Neurology. 1988 Dec;38(12):1822–1825. doi: 10.1212/wnl.38.12.1822. [DOI] [PubMed] [Google Scholar]
  8. Filippini G., Comi G. C., Cosi V., Bevilacqua L., Ferrarini M., Martinelli V., Bergamaschi R., Filippi M., Citterio A., D'Incerti L. Sensitivities and predictive values of paraclinical tests for diagnosing multiple sclerosis. J Neurol. 1994 Jan;241(3):132–137. doi: 10.1007/BF00868339. [DOI] [PubMed] [Google Scholar]
  9. Giang D. W., Grow V. M., Mooney C., Mushlin A. I., Goodman A. D., Mattson D. H., Schiffer R. B. Clinical diagnosis of multiple sclerosis. The impact of magnetic resonance imaging and ancillary testing. Rochester-Toronto Magnetic Resonance Study Group. Arch Neurol. 1994 Jan;51(1):61–66. doi: 10.1001/archneur.1994.00540130087016. [DOI] [PubMed] [Google Scholar]
  10. Giesser B. S., Kurtzberg D., Vaughan H. G., Jr, Arezzo J. C., Aisen M. L., Smith C. R., LaRocca N. G., Scheinberg L. C. Trimodal evoked potentials compared with magnetic resonance imaging in the diagnosis of multiple sclerosis. Arch Neurol. 1987 Mar;44(3):281–284. doi: 10.1001/archneur.1987.00520150035017. [DOI] [PubMed] [Google Scholar]
  11. Gilmore R. L., Kasarskis E. J., Carr W. A., Norvell E. Comparative impact of paraclinical studies in establishing the diagnosis of multiple sclerosis. Electroencephalogr Clin Neurophysiol. 1989 Nov;73(5):433–442. doi: 10.1016/0013-4694(89)90093-x. [DOI] [PubMed] [Google Scholar]
  12. Hess C. W., Mills K. R., Murray N. M. Measurement of central motor conduction in multiple sclerosis by magnetic brain stimulation. Lancet. 1986 Aug 16;2(8503):355–358. doi: 10.1016/s0140-6736(86)90050-4. [DOI] [PubMed] [Google Scholar]
  13. Hess C. W., Mills K. R., Murray N. M., Schriefer T. N. Magnetic brain stimulation: central motor conduction studies in multiple sclerosis. Ann Neurol. 1987 Dec;22(6):744–752. doi: 10.1002/ana.410220611. [DOI] [PubMed] [Google Scholar]
  14. Izquierdo G., Hauw J. J., Lyon-Caen O., Marteau R., Escourolle R., Buge A., Castaigne P., Lhermitte F. Value of multiple sclerosis diagnostic criteria. 70 autopsy-confirmed cases. Arch Neurol. 1985 Sep;42(9):848–850. doi: 10.1001/archneur.1985.04060080026010. [DOI] [PubMed] [Google Scholar]
  15. Lee K. H., Hashimoto S. A., Hooge J. P., Kastrukoff L. F., Oger J. J., Li D. K., Paty D. W. Magnetic resonance imaging of the head in the diagnosis of multiple sclerosis: a prospective 2-year follow-up with comparison of clinical evaluation, evoked potentials, oligoclonal banding, and CT. Neurology. 1991 May;41(5):657–660. doi: 10.1212/wnl.41.5.657. [DOI] [PubMed] [Google Scholar]
  16. Mayr N., Baumgartner C., Zeitlhofer J., Deecke L. The sensitivity of transcranial cortical magnetic stimulation in detecting pyramidal tract lesions in clinically definite multiple sclerosis. Neurology. 1991 Apr;41(4):566–569. doi: 10.1212/wnl.41.4.566. [DOI] [PubMed] [Google Scholar]
  17. Mehta P. D., Patrick B. A. Detection of oligoclonal bands in unconcentrated CSF: isoelectric focusing and silver staining. Neurology. 1983 Oct;33(10):1365–1368. doi: 10.1212/wnl.33.10.1365. [DOI] [PubMed] [Google Scholar]
  18. Morrissey S. P., Miller D. H., Kendall B. E., Kingsley D. P., Kelly M. A., Francis D. A., MacManus D. G., McDonald W. I. The significance of brain magnetic resonance imaging abnormalities at presentation with clinically isolated syndromes suggestive of multiple sclerosis. A 5-year follow-up study. Brain. 1993 Feb;116(Pt 1):135–146. doi: 10.1093/brain/116.1.135. [DOI] [PubMed] [Google Scholar]
  19. Murray N. M. The clinical usefulness of magnetic cortical stimulation. Electroencephalogr Clin Neurophysiol. 1992 Apr;85(2):81–85. doi: 10.1016/0168-5597(92)90072-j. [DOI] [PubMed] [Google Scholar]
  20. O'Connor P., Tansey C., Kucharczyk W., Detsky A. S. A randomized trial of test result sequencing in patients with suspected multiple sclerosis. Rochester-Toronto MRI Study Group. Arch Neurol. 1994 Jan;51(1):53–59. doi: 10.1001/archneur.1994.00540130079014. [DOI] [PubMed] [Google Scholar]
  21. Offenbacher H., Fazekas F., Schmidt R., Freidl W., Flooh E., Payer F., Lechner H. Assessment of MRI criteria for a diagnosis of MS. Neurology. 1993 May;43(5):905–909. doi: 10.1212/wnl.43.5.905. [DOI] [PubMed] [Google Scholar]
  22. Paty D. W., Oger J. J., Kastrukoff L. F., Hashimoto S. A., Hooge J. P., Eisen A. A., Eisen K. A., Purves S. J., Low M. D., Brandejs V. MRI in the diagnosis of MS: a prospective study with comparison of clinical evaluation, evoked potentials, oligoclonal banding, and CT. Neurology. 1988 Feb;38(2):180–185. doi: 10.1212/wnl.38.2.180. [DOI] [PubMed] [Google Scholar]
  23. Polman C. H., Koetsier J. C., Wolters E. C. Multiple sclerosis: incorporation of results of laboratory techniques in the diagnosis. Clin Neurol Neurosurg. 1985;87(3):187–192. doi: 10.1016/0303-8467(85)90005-8. [DOI] [PubMed] [Google Scholar]
  24. Ravnborg M., Liguori R., Christiansen P., Larsson H., Sørensen P. S. The diagnostic reliability of magnetically evoked motor potentials in multiple sclerosis. Neurology. 1992 Jul;42(7):1296–1301. doi: 10.1212/wnl.42.7.1296. [DOI] [PubMed] [Google Scholar]
  25. Rossini P. M., Zarola F., Floris R., Bernardi G., Perretti A., Pelosi L., Caruso G., Caramia M. D. Sensory (VEP, BAEP, SEP) and motor-evoked potentials, liquoral and magnetic resonance findings in multiple sclerosis. Eur Neurol. 1989;29(1):41–47. doi: 10.1159/000116376. [DOI] [PubMed] [Google Scholar]
  26. Rösler K. M., Hess C. W., Heckmann R., Ludin H. P. Significance of shape and size of the stimulating coil in magnetic stimulation of the human motor cortex. Neurosci Lett. 1989 May 22;100(1-3):347–352. doi: 10.1016/0304-3940(89)90711-8. [DOI] [PubMed] [Google Scholar]
  27. SCHUMACHER G. A., BEEBE G., KIBLER R. F., KURLAND L. T., KURTZKE J. F., MCDOWELL F., NAGLER B., SIBLEY W. A., TOURTELLOTTE W. W., WILLMON T. L. PROBLEMS OF EXPERIMENTAL TRIALS OF THERAPY IN MULTIPLE SCLEROSIS: REPORT BY THE PANEL ON THE EVALUATION OF EXPERIMENTAL TRIALS OF THERAPY IN MULTIPLE SCLEROSIS. Ann N Y Acad Sci. 1965 Mar 31;122:552–568. doi: 10.1111/j.1749-6632.1965.tb20235.x. [DOI] [PubMed] [Google Scholar]
  28. Sharief M. K., Thompson E. J. The predictive value of intrathecal immunoglobulin synthesis and magnetic resonance imaging in acute isolated syndromes for subsequent development of multiple sclerosis. Ann Neurol. 1991 Feb;29(2):147–151. doi: 10.1002/ana.410290206. [DOI] [PubMed] [Google Scholar]
  29. Tackmann W., Strenge H., Barth R., Sojka-Raytscheff A. Evaluation of various brain structures in multiple sclerosis with multimodality evoked potentials, blink reflex and nystagmography. J Neurol. 1980;224(1):33–46. doi: 10.1007/BF00313205. [DOI] [PubMed] [Google Scholar]
  30. Tibbling G., Link H., Ohman S. Principles of albumin and IgG analyses in neurological disorders. I. Establishment of reference values. Scand J Clin Lab Invest. 1977 Sep;37(5):385–390. doi: 10.1080/00365517709091496. [DOI] [PubMed] [Google Scholar]
  31. Walsh J. C., Garrick R., Cameron J., McLeod J. G. Evoked potential changes in clinically definite multiple sclerosis: a two year follow up study. J Neurol Neurosurg Psychiatry. 1982 Jun;45(6):494–500. doi: 10.1136/jnnp.45.6.494. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES