Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 1995 Oct;59(4):359–367. doi: 10.1136/jnnp.59.4.359

Changes in cerebral oxygen consumption are independent of changes in body oxygen consumption after severe head injury in childhood.

D S Matthews 1, J N Matthews 1, A Aynsley-Green 1, R E Bullock 1, J A Eyre 1
PMCID: PMC486069  PMID: 7561912

Abstract

This study examines the relation between cerebral O2 consumption (CMRO2) and the O2 consumption of the rest of the body (BVO2) after severe head injury. Seventy nine serial measurements of whole body O2 consumption, CMRO2, plasma adrenaline, T3, and glucagon concentrations were made in 15 children with severe head injuries receiving neurointensive care. Body O2 consumption was measured with indirect calorimetry and CMRO2 with the Kety-Schmidt technique. There was no evidence of a significant relation between CMRO2 and BVO2. Within each child there were statistically significant positive relations between BVO2 and adrenaline, T3, and glucagon. By contrast, there was only a weak significant positive relation between CMRO2 and T3. In conclusion, CMRO2 and BVO2 seem to be determined independently after severe head injury. Thus therapeutic measures aiming to reduce CMRO2 need to be specific to the brain and it should not be assumed that measures which decrease whole body energy expenditure will necessarily have the same effect on CMRO2.

Full text

PDF
359

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker S. P., O'Neill B., Haddon W., Jr, Long W. B. The injury severity score: a method for describing patients with multiple injuries and evaluating emergency care. J Trauma. 1974 Mar;14(3):187–196. [PubMed] [Google Scholar]
  2. Berntman L., Carlsson C., Siesjö B. K. Cerebral oxygen consumption and blood flow in hypoxia: influence of sympathoadrenal activation. Stroke. 1979 Jan-Feb;10(1):20–25. doi: 10.1161/01.str.10.1.20. [DOI] [PubMed] [Google Scholar]
  3. Bessey P. Q., Watters J. M., Aoki T. T., Wilmore D. W. Combined hormonal infusion simulates the metabolic response to injury. Ann Surg. 1984 Sep;200(3):264–281. doi: 10.1097/00000658-198409000-00004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brown M. J., Jenner D. A. Novel double-isotope technique for enzymatic assay of catecholamines, permitting high precision, sensitivity and plasma sample capacity. Clin Sci (Lond) 1981 Nov;61(5):591–598. doi: 10.1042/cs0610591. [DOI] [PubMed] [Google Scholar]
  5. Bryan R. M., Jr Cerebral blood flow and energy metabolism during stress. Am J Physiol. 1990 Aug;259(2 Pt 2):H269–H280. doi: 10.1152/ajpheart.1990.259.2.H269. [DOI] [PubMed] [Google Scholar]
  6. Carlsson C., Hägerdal M., Kaasik A. E., Siesjö B. K. A catecholamine-mediated increase in cerebral oxygen uptake during immobilisation stress in rats. Brain Res. 1977 Jan 1;119(1):223–231. doi: 10.1016/0006-8993(77)90102-0. [DOI] [PubMed] [Google Scholar]
  7. Ekström-Jodal B., Häggendal J., Larsson L. E., Westerlind A. Cerebral hemodynamics, oxygen uptake and cerebral arteriovenous differences of catecholamines following E. coli endotoxin in dogs. Acta Anaesthesiol Scand. 1982 Oct;26(5):446–452. doi: 10.1111/j.1399-6576.1982.tb01797.x. [DOI] [PubMed] [Google Scholar]
  8. Gross G., Brodde O. E., Schümann H. J. Effects of thyroid hormone deficiency on pre- and postsynaptic noradrenergic mechanisms in the rat cerebral cortex. Arch Int Pharmacodyn Ther. 1980 Apr;244(2):219–230. [PubMed] [Google Scholar]
  9. Hafner R. P., Brown G. C., Brand M. D. Thyroid-hormone control of state-3 respiration in isolated rat liver mitochondria. Biochem J. 1990 Feb 1;265(3):731–734. doi: 10.1042/bj2650731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. KLITGAARD H. M., DIRKS H. B., Jr, GARLICK W. R., BARKER S. B. Protein-bound iodine in various tissues after injection of elemental iodine. Endocrinology. 1952 Feb;50(2):170–173. doi: 10.1210/endo-50-2-170. [DOI] [PubMed] [Google Scholar]
  11. Kety S. S., Schmidt C. F. THE NITROUS OXIDE METHOD FOR THE QUANTITATIVE DETERMINATION OF CEREBRAL BLOOD FLOW IN MAN: THEORY, PROCEDURE AND NORMAL VALUES. J Clin Invest. 1948 Jul;27(4):476–483. doi: 10.1172/JCI101994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. MacKenzie E. T., McCulloch J., Harper A. M. Influence of endogenous norepinephrine on cerebral blood flow and metabolism. Am J Physiol. 1976 Aug;231(2):489–494. doi: 10.1152/ajplegacy.1976.231.2.489. [DOI] [PubMed] [Google Scholar]
  13. Matthews D. S., Aynsley-Green A., Matthews J. N., Bullock R. E., Cooper B. G., Eyre J. A. The effect of severe head injury on whole body energy expenditure and its possible hormonal mediators in children. Pediatr Res. 1995 Apr;37(4 Pt 1):409–417. doi: 10.1203/00006450-199504000-00005. [DOI] [PubMed] [Google Scholar]
  14. Matthews D. S., Bullock R. E., Matthews J. N., Aynsley-Green A., Eyre J. A. Temperature response to severe head injury and the effect on body energy expenditure and cerebral oxygen consumption. Arch Dis Child. 1995 Jun;72(6):507–515. doi: 10.1136/adc.72.6.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McGregor I. S., Menéndez J. A., Atrens D. M., Lin H. Q. Prefrontal cortex alpha 2 adrenoceptors and energy balance. Brain Res Bull. 1991 May;26(5):683–691. doi: 10.1016/0361-9230(91)90161-c. [DOI] [PubMed] [Google Scholar]
  16. Pardridge W. M. Carrier-mediated transport of thyroid hormones through the rat blood-brain barrier: primary role of albumin-bound hormone. Endocrinology. 1979 Sep;105(3):605–612. doi: 10.1210/endo-105-3-605. [DOI] [PubMed] [Google Scholar]
  17. Persson L., Hansson H. A., Sourander P. Extravasation, spread and cellular uptake of Evans blue-labelled albumin around a reproducible small stab-wound in the rat brain. Acta Neuropathol. 1976 Mar 15;34(2):125–136. doi: 10.1007/BF00684663. [DOI] [PubMed] [Google Scholar]
  18. Robertson C. S., Clifton G. L., Grossman R. G., Ou C. N., Goodman J. C., Borum P., Bejot S., Barrodale P. Alterations in cerebral availability of metabolic substrates after severe head injury. J Trauma. 1988 Nov;28(11):1523–1532. doi: 10.1097/00005373-198811000-00002. [DOI] [PubMed] [Google Scholar]
  19. Schaefer F., Georgi M., Zieger A., Schärer K. Usefulness of bioelectric impedance and skinfold measurements in predicting fat-free mass derived from total body potassium in children. Pediatr Res. 1994 May;35(5):617–624. [PubMed] [Google Scholar]
  20. Schwartz H. L., Oppenheimer J. H. Nuclear triiodothyronine receptor sites in brain: probable identity with hepatic receptors and regional distribution. Endocrinology. 1978 Jul;103(1):267–273. doi: 10.1210/endo-103-1-267. [DOI] [PubMed] [Google Scholar]
  21. Schwartz H. L., Oppenheimer J. H. Ontogenesis of 3,5,3'-triiodothyronine receptors in neonatal rat brain: dissociation between receptor concentration and stimulation of oxygen consumption by 3,5,3'-triiodothyronine. Endocrinology. 1978 Sep;103(3):943–948. doi: 10.1210/endo-103-3-943. [DOI] [PubMed] [Google Scholar]
  22. Settergren G., Lindblad B. S., Persson B. Cerebral blood flow and exchange of oxygen, glucose ketone bodies, lactate, pyruvate and amino acids in anesthetized children. Acta Paediatr Scand. 1980 Jul;69(4):457–465. doi: 10.1111/j.1651-2227.1980.tb07114.x. [DOI] [PubMed] [Google Scholar]
  23. Shapira Y., Setton D., Artru A. A., Shohami E. Blood-brain barrier permeability, cerebral edema, and neurologic function after closed head injury in rats. Anesth Analg. 1993 Jul;77(1):141–148. doi: 10.1213/00000539-199307000-00028. [DOI] [PubMed] [Google Scholar]
  24. Sharples P. M., Stuart A. G., Aynsley-Green A., Heaviside D., Pay D. A., McGann A., Crawford P. J., Harpin R., Eyre J. A. A practical method of serial bedside measurement of cerebral blood flow and metabolism during neurointensive care. Arch Dis Child. 1991 Nov;66(11):1326–1332. doi: 10.1136/adc.66.11.1326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sharples P. M., Stuart A. G., Matthews D. S., Aynsley-Green A., Eyre J. A. Cerebral blood flow and metabolism in children with severe head injury. Part 1: Relation to age, Glasgow coma score, outcome, intracranial pressure, and time after injury. J Neurol Neurosurg Psychiatry. 1995 Feb;58(2):145–152. doi: 10.1136/jnnp.58.2.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Siegel J. H., Cerra F. B., Coleman B., Giovannini I., Shetye M., Border J. R., McMenamy R. H. Physiological and metabolic correlations in human sepsis. Invited commentary. Surgery. 1979 Aug;86(2):163–193. [PubMed] [Google Scholar]
  27. Staten M. A., Matthews D. E., Cryer P. E., Bier D. M. Physiological increments in epinephrine stimulate metabolic rate in humans. Am J Physiol. 1987 Sep;253(3 Pt 1):E322–E330. doi: 10.1152/ajpendo.1987.253.3.E322. [DOI] [PubMed] [Google Scholar]
  28. Teasdale G., Jennett B. Assessment of coma and impaired consciousness. A practical scale. Lancet. 1974 Jul 13;2(7872):81–84. doi: 10.1016/s0140-6736(74)91639-0. [DOI] [PubMed] [Google Scholar]
  29. WEIR J. B. DE B. New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol. 1949 Aug;109(1-2):1–9. doi: 10.1113/jphysiol.1949.sp004363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Walker P., Weichsel M. E., Jr, Fisher D. A., Guo S. M., Fisher D. A. Thyroxine increases nerve growth factor concentration in adult mouse brain. Science. 1979 Apr 27;204(4391):427–429. doi: 10.1126/science.441732. [DOI] [PubMed] [Google Scholar]
  31. Watanabe A., Fujiwara M., Nagashima H. Glucagon-like polypeptide and insulin contents in the brain from acute hepatic failure dogs. Res Exp Med (Berl) 1986;186(3):203–208. doi: 10.1007/BF01852045. [DOI] [PubMed] [Google Scholar]
  32. Westenskow D. R., Cutler C. A., Wallace W. D. Instrumentation for monitoring gas exchange and metabolic rate in critically ill patients. Crit Care Med. 1984 Mar;12(3):183–187. doi: 10.1097/00003246-198403000-00006. [DOI] [PubMed] [Google Scholar]
  33. Winick M., Rosso P. Head circumference and cellular growth of the brain in normal and marasmic children. J Pediatr. 1969 May;74(5):774–778. doi: 10.1016/s0022-3476(69)80140-x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES