Abstract
BACKGROUND--Palatal tremor is divided into symptomatic palatal tremor (SPT) and essential palatal tremor (EPT) on the basis of clinical features. The inferior olive seems to be abnormal in SPT, but not EPT. Because the inferior olive is likely to be involved in several types of motor learning, it is hypothesised that motor learning would be abnormal in patients with SPT, but not those with EPT. METHODS--In six patients with SPT and four patients with EPT, two motor learning paradigms were studied--the classical conditioning of an acoustically elicited eyeblink with electrical supraorbital nerve shock and a test of adaptation of ballistic arm movements to a change of the gain. RESULTS--Classical conditioning was impaired unilaterally or bilaterally in the patients with SPT, depending on whether they had unilateral or bilateral abnormalities of the inferior olives, except for the two least affected patients. All but one of the patients with EPT had normal conditioning. On the adaptation test of arm movements, most of the patients with SPT had impaired learning of the arm contralateral to the hypertrophied inferior olive, regardless of whether the abnormality was unilateral or bilateral, but all patients with EPT had normal results. CONCLUSIONS--In SPT pseudohypertrophy of the inferior olive leads to defective cerebellar function, whereas in EPT the inferior olive functions normally.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Deuschl G., Mischke G., Schenck E., Schulte-Mönting J., Lücking C. H. Symptomatic and essential rhythmic palatal myoclonus. Brain. 1990 Dec;113(Pt 6):1645–1672. doi: 10.1093/brain/113.6.1645. [DOI] [PubMed] [Google Scholar]
- Deuschl G., Toro C., Valls-Solé J., Zeffiro T., Zee D. S., Hallett M. Symptomatic and essential palatal tremor. 1. Clinical, physiological and MRI analysis. Brain. 1994 Aug;117(Pt 4):775–788. doi: 10.1093/brain/117.4.775. [DOI] [PubMed] [Google Scholar]
- Deuschl G., Toro C., Zeffiro T., Massaquoi S., Hallett M. Adaptation motor learning of arm movements in patients with cerebellar disease. J Neurol Neurosurg Psychiatry. 1996 May;60(5):515–519. doi: 10.1136/jnnp.60.5.515. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dubinsky R. M., Hallett M. Palatal myoclonus and facial involvement in other types of myoclonus. Adv Neurol. 1988;49:263–278. [PubMed] [Google Scholar]
- Gellman R., Houk J. C., Gibson A. R. Somatosensory properties of the inferior olive of the cat. J Comp Neurol. 1983 Apr 1;215(2):228–243. doi: 10.1002/cne.902150210. [DOI] [PubMed] [Google Scholar]
- Gordon J., Ghez C. Trajectory control in targeted force impulses. II. Pulse height control. Exp Brain Res. 1987;67(2):241–252. doi: 10.1007/BF00248546. [DOI] [PubMed] [Google Scholar]
- Goto N., Kaneko M. Olivary enlargement: chronological and morphometric analyses. Acta Neuropathol. 1981;54(4):275–282. doi: 10.1007/BF00697000. [DOI] [PubMed] [Google Scholar]
- Hallett M., Shahani B. T., Young R. R. EMG analysis of stereotyped voluntary movements in man. J Neurol Neurosurg Psychiatry. 1975 Dec;38(12):1154–1162. doi: 10.1136/jnnp.38.12.1154. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lalonde R., Botez M. I. The cerebellum and learning processes in animals. Brain Res Brain Res Rev. 1990 Sep-Dec;15(3):325–332. doi: 10.1016/0165-0173(90)90006-a. [DOI] [PubMed] [Google Scholar]
- Lapresle J. Palatal myoclonus. Adv Neurol. 1986;43:265–273. [PubMed] [Google Scholar]
- Lapresle J. Rhythmic palatal myoclonus and the dentato-olivary pathway. J Neurol. 1979 Jan 5;220(4):223–230. doi: 10.1007/BF00314146. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marr D. A theory of cerebellar cortex. J Physiol. 1969 Jun;202(2):437–470. doi: 10.1113/jphysiol.1969.sp008820. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murphy M. G., O'Leary J. L. Neurological deficit in cats with lesions of the olivocebellar system. Arch Neurol. 1971 Feb;24(2):145–157. doi: 10.1001/archneur.1971.00480320073007. [DOI] [PubMed] [Google Scholar]
- Sanes J. N., Dimitrov B., Hallett M. Motor learning in patients with cerebellar dysfunction. Brain. 1990 Feb;113(Pt 1):103–120. doi: 10.1093/brain/113.1.103. [DOI] [PubMed] [Google Scholar]
- Thach W. T., Goodkin H. P., Keating J. G. The cerebellum and the adaptive coordination of movement. Annu Rev Neurosci. 1992;15:403–442. doi: 10.1146/annurev.ne.15.030192.002155. [DOI] [PubMed] [Google Scholar]
- Thompson R. F. Neural mechanisms of classical conditioning in mammals. Philos Trans R Soc Lond B Biol Sci. 1990 Aug 29;329(1253):161–170. doi: 10.1098/rstb.1990.0161. [DOI] [PubMed] [Google Scholar]
- Topka H., Valls-Solé J., Massaquoi S. G., Hallett M. Deficit in classical conditioning in patients with cerebellar degeneration. Brain. 1993 Aug;116(Pt 4):961–969. doi: 10.1093/brain/116.4.961. [DOI] [PubMed] [Google Scholar]
- Weiner M. J., Hallett M., Funkenstein H. H. Adaptation to lateral displacement of vision in patients with lesions of the central nervous system. Neurology. 1983 Jun;33(6):766–772. doi: 10.1212/wnl.33.6.766. [DOI] [PubMed] [Google Scholar]
- Yeo C. H., Hardiman M. J. Cerebellar cortex and eyeblink conditioning: a reexamination. Exp Brain Res. 1992;88(3):623–638. doi: 10.1007/BF00228191. [DOI] [PubMed] [Google Scholar]
- Yeo C. H., Hardiman M. J., Glickstein M. Classical conditioning of the nictitating membrane response of the rabbit. IV. Lesions of the inferior olive. Exp Brain Res. 1986;63(1):81–92. doi: 10.1007/BF00235649. [DOI] [PubMed] [Google Scholar]