Abstract
OBJECTIVES: To serially assess changes in lumbar CSF biogenic amines, radiographic characteristics, and neurological signs in 34 patients with dominantly inherited ataxia. METHODS: Mutational analysis was used to identify genetic subgroups. Annual assessment of lumbar CSF monoamine metabolites using a gas chromatographic/mass spectrometric method and morphometric measurements of the cerebellum, pons, and the cervical spinal cord on MRI were analysed for each patient and compared with normal controls. RESULTS: Patients with CAG trinucleotide repeat expansions on chromosome 6p (mutSCA1) and chromosome 14q (mutSCA3) had only about one half the normal concentrations of lumbar CSF homovanillic acid (HVA) whereas, 5-hydroxyindoleacetic acid (5-HIAA) concentrations were similar to those in age matched normal subjects. The HVA and 5-HIAA concentrations in clinically similar patients without mutSCA1 or mutSCA3 were normal. One year after the first study, HVA concentrations were reduced by a mean of 22% regardless of the patient's SCA mutation. Abnormalities on MRI were consistent with a spinopontine atrophy in patients with mutSCA3, spinopontocerebellar atrophy in patients with mutSCA1, and "pure" cerebellar atrophy in patients without these mutations. CONCLUSIONS: Quantitative MRI measurements were not useful in monitoring progression of disease but lumbar CSF HVA concentrations and total scores on a revised version of the ataxia clinical rating scale seemed to progress in parallel.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Benomar A., Krols L., Stevanin G., Cancel G., LeGuern E., David G., Ouhabi H., Martin J. J., Dürr A., Zaim A. The gene for autosomal dominant cerebellar ataxia with pigmentary macular dystrophy maps to chromosome 3p12-p21.1. Nat Genet. 1995 May;10(1):84–88. doi: 10.1038/ng0595-84. [DOI] [PubMed] [Google Scholar]
- Bonni A., del Carpio-O'Donovan R., Robitaille Y., Andermann E., Andermann F., Arnold D. A. Magnetic resonance imaging in the diagnosis of dominantly inherited cerebello-olivary atrophy: a clinicopathologic study. Can Assoc Radiol J. 1993 Jun;44(3):194–198. [PubMed] [Google Scholar]
- Campanella G., Filla A., DeFalco F., Mansi D., Durivage A., Barbeau A. Friedreich's ataxia in the south of Italy: a clinical and biochemical survey of 23 patients. Can J Neurol Sci. 1980 Nov;7(4):351–357. doi: 10.1017/s0317167100022873. [DOI] [PubMed] [Google Scholar]
- De Falco F. A., Mansi D., Ventola F., Filla A., Campanella G. Proposta di una scheda di rilevamento clinico delle atassie spino-cerebellari. Acta Neurol Quad (Napoli) 1979;39:103–109. [PubMed] [Google Scholar]
- Dürr A., Stevanin G., Cancel G., Duyckaerts C., Abbas N., Didierjean O., Chneiweiss H., Benomar A., Lyon-Caen O., Julien J. Spinocerebellar ataxia 3 and Machado-Joseph disease: clinical, molecular, and neuropathological features. Ann Neurol. 1996 Apr;39(4):490–499. doi: 10.1002/ana.410390411. [DOI] [PubMed] [Google Scholar]
- Gispert S., Twells R., Orozco G., Brice A., Weber J., Heredero L., Scheufler K., Riley B., Allotey R., Nothers C. Chromosomal assignment of the second locus for autosomal dominant cerebellar ataxia (SCA2) to chromosome 12q23-24.1. Nat Genet. 1993 Jul;4(3):295–299. doi: 10.1038/ng0793-295. [DOI] [PubMed] [Google Scholar]
- Goetz C. G., Tanner C. M., Klawans H. L. The pharmacology of olivopontocerebellar atrophy. Adv Neurol. 1984;41:143–148. [PubMed] [Google Scholar]
- Gouw L. G., Kaplan C. D., Haines J. H., Digre K. B., Rutledge S. L., Matilla A., Leppert M., Zoghbi H. Y., Ptácek L. J. Retinal degeneration characterizes a spinocerebellar ataxia mapping to chromosome 3p. Nat Genet. 1995 May;10(1):89–93. doi: 10.1038/ng0595-89. [DOI] [PubMed] [Google Scholar]
- Harding A. E. The clinical features and classification of the late onset autosomal dominant cerebellar ataxias. A study of 11 families, including descendants of the 'the Drew family of Walworth'. Brain. 1982 Mar;105(Pt 1):1–28. doi: 10.1093/brain/105.1.1. [DOI] [PubMed] [Google Scholar]
- Hertzman P. A., Blevins W. L., Mayer J., Greenfield B., Ting M., Gleich G. J. Association of the eosinophilia-myalgia syndrome with the ingestion of tryptophan. N Engl J Med. 1990 Mar 29;322(13):869–873. doi: 10.1056/NEJM199003293221301. [DOI] [PubMed] [Google Scholar]
- Higgins J. J., Harvey-White J. D., Kopin I. J. Low lumbar CSF concentrations of homovanillic acid in the autosomal dominant ataxias. J Neurol Neurosurg Psychiatry. 1995 Jun;58(6):760–760. doi: 10.1136/jnnp.58.6.760. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Higgins J. J., Nee L. E., Vasconcelos O., Ide S. E., Lavedan C., Goldfarb L. G., Polymeropoulos M. H. Mutations in American families with spinocerebellar ataxia (SCA) type 3: SCA3 is allelic to Machado-Joseph disease. Neurology. 1996 Jan;46(1):208–213. doi: 10.1212/wnl.46.1.208. [DOI] [PubMed] [Google Scholar]
- Kawaguchi Y., Okamoto T., Taniwaki M., Aizawa M., Inoue M., Katayama S., Kawakami H., Nakamura S., Nishimura M., Akiguchi I. CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat Genet. 1994 Nov;8(3):221–228. doi: 10.1038/ng1194-221. [DOI] [PubMed] [Google Scholar]
- Kish S. J., Robitaille Y., el-Awar M., Clark B., Schut L., Ball M. J., Young L. T., Currier R., Shannak K. Striatal monoamine neurotransmitters and metabolites in dominantly inherited olivopontocerebellar atrophy. Neurology. 1992 Aug;42(8):1573–1577. doi: 10.1212/wnl.42.8.1573. [DOI] [PubMed] [Google Scholar]
- Klawans H. L., Jr, Zeitlin E. L-dopa in Parkinsonism associated with cerebellar dysfunction (probable olivopontocerebellar degeneration). J Neurol Neurosurg Psychiatry. 1971 Feb;34(1):14–19. doi: 10.1136/jnnp.34.1.14. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matilla T., McCall A., Subramony S. H., Zoghbi H. Y. Molecular and clinical correlations in spinocerebellar ataxia type 3 and Machado-Joseph disease. Ann Neurol. 1995 Jul;38(1):68–72. doi: 10.1002/ana.410380113. [DOI] [PubMed] [Google Scholar]
- Nabatame H., Fukuyama H., Akiguchi I., Kameyama M., Nishimura K., Nakano Y. Spinocerebellar degeneration: qualitative and quantitative MR analysis of atrophy. J Comput Assist Tomogr. 1988 Mar-Apr;12(2):298–303. [PubMed] [Google Scholar]
- Orozco G., Estrada R., Perry T. L., Araña J., Fernandez R., Gonzalez-Quevedo A., Galarraga J., Hansen S. Dominantly inherited olivopontocerebellar atrophy from eastern Cuba. Clinical, neuropathological, and biochemical findings. J Neurol Sci. 1989 Oct;93(1):37–50. doi: 10.1016/0022-510x(89)90159-7. [DOI] [PubMed] [Google Scholar]
- Orr H. T., Chung M. Y., Banfi S., Kwiatkowski T. J., Jr, Servadio A., Beaudet A. L., McCall A. E., Duvick L. A., Ranum L. P., Zoghbi H. Y. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet. 1993 Jul;4(3):221–226. doi: 10.1038/ng0793-221. [DOI] [PubMed] [Google Scholar]
- Polinsky R. J., Brown R. T., Burns R. S., Harvey-White J., Kopin I. J. Low lumbar CSF levels of homovanillic acid and 5-hydroxyindoleacetic acid in multiple system atrophy with autonomic failure. J Neurol Neurosurg Psychiatry. 1988 Jul;51(7):914–919. doi: 10.1136/jnnp.51.7.914. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pourcher E., Barbeau A. Field testing of an ataxia scoring and staging system. Can J Neurol Sci. 1980 Nov;7(4):339–344. doi: 10.1017/s031716710002285x. [DOI] [PubMed] [Google Scholar]
- Ranum L. P., Schut L. J., Lundgren J. K., Orr H. T., Livingston D. M. Spinocerebellar ataxia type 5 in a family descended from the grandparents of President Lincoln maps to chromosome 11. Nat Genet. 1994 Nov;8(3):280–284. doi: 10.1038/ng1194-280. [DOI] [PubMed] [Google Scholar]
- Robitaille Y., Schut L., Kish S. J. Structural and immunocytochemical features of olivopontocerebellar atrophy caused by the spinocerebellar ataxia type 1 (SCA-1) mutation define a unique phenotype. Acta Neuropathol. 1995;90(6):572–581. doi: 10.1007/BF00318569. [DOI] [PubMed] [Google Scholar]
- Rosenberg R. N., Nyhan W. L., Bay C., Shore P. Autosomal dominant striatonigral degeneration. A clinical, pathologic, and biochemical study of a new genetic disorder. Neurology. 1976 Aug;26(8):703–714. doi: 10.1212/wnl.26.8.703. [DOI] [PubMed] [Google Scholar]
- Silveira I., Lopes-Cendes I., Kish S., Maciel P., Gaspar C., Coutinho P., Botez M. I., Teive H., Arruda W., Steiner C. E. Frequency of spinocerebellar ataxia type 1, dentatorubropallidoluysian atrophy, and Machado-Joseph disease mutations in a large group of spinocerebellar ataxia patients. Neurology. 1996 Jan;46(1):214–218. doi: 10.1212/wnl.46.1.214. [DOI] [PubMed] [Google Scholar]
- Stevanin G., Le Guern E., Ravisé N., Chneiweiss H., Dürr A., Cancel G., Vignal A., Boch A. L., Ruberg M., Penet C. A third locus for autosomal dominant cerebellar ataxia type I maps to chromosome 14q24.3-qter: evidence for the existence of a fourth locus. Am J Hum Genet. 1994 Jan;54(1):11–20. [PMC free article] [PubMed] [Google Scholar]
- Takiyama Y., Oyanagi S., Kawashima S., Sakamoto H., Saito K., Yoshida M., Tsuji S., Mizuno Y., Nishizawa M. A clinical and pathologic study of a large Japanese family with Machado-Joseph disease tightly linked to the DNA markers on chromosome 14q. Neurology. 1994 Jul;44(7):1302–1308. doi: 10.1212/wnl.44.7.1302. [DOI] [PubMed] [Google Scholar]
- Woods B. T., Schaumburg H. H. Nigro-spino-dentatal degeneration with nuclear ophthalmoplegia. A unique and partially treatable clinico-pathological entity. J Neurol Sci. 1972 Oct;17(2):149–166. doi: 10.1016/0022-510x(72)90137-2. [DOI] [PubMed] [Google Scholar]
- Zhong X. H., Haycock J. W., Shannak K., Robitaille Y., Fratkin J., Koeppen A. H., Hornykiewicz O., Kish S. J. Striatal dihydroxyphenylalanine decarboxylase and tyrosine hydroxylase protein in idiopathic Parkinson's disease and dominantly inherited olivopontocerebellar atrophy. Mov Disord. 1995 Jan;10(1):10–17. doi: 10.1002/mds.870100104. [DOI] [PubMed] [Google Scholar]

