Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 1997 Jan;62(1):61–65. doi: 10.1136/jnnp.62.1.61

Influence of spinal cord injury on cerebral sensorimotor systems: a PET study.

U Roelcke 1, A Curt 1, A Otte 1, J Missimer 1, R P Maguire 1, V Dietz 1, K L Leenders 1
PMCID: PMC486696  PMID: 9010401

Abstract

OBJECTIVES: To assess the effect of a transverse spinal cord lesion on cerebral energy metabolism in view of sensorimotor reorganisation. METHODS: PET and 18F-fluorodeoxyglucose were used to study resting cerebral glucose metabolism in 11 patients with complete paraplegia or tetraplegia after spinal cord injury and 12 healthy subjects. Regions of interest analysis was performed to determine global glucose metabolism (CMRGlu). Statistical parametric mapping was applied to compare both groups on a pixel by pixel basis (significance level P = 0.001). RESULTS: Global absolute CMRGlu was lower in spinal cord injury (33.6 (6.6) mumol/100 ml/min (mean (SD)) than in controls (45.6 (6.2), Mann-Whitney P = 0.0026). Statistical parametric mapping analysis disclosed relatively increased glucose metabolism particularly in the supplementary motor area, anterior cingulate, and putamen. Relatively reduced glucose metabolism in patients with spinal cord injury was found in the midbrain, cerebellar hemispheres, and temporal cortex. CONCLUSIONS: It is assumed that cerebral deafferentiation due to reduction or loss of sensorimotor function results in the low level of absolute global CMRGlu found in patients with spinal cord injury. Relatively increased glucose metabolism in brain regions involved in attention and initiation of movement may be related to secondary disinhibition of these regions.

Full text

PDF
61

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baron J. C. Depression of energy metabolism in distant brain structures: studies with positron emission tomography in stroke patients. Semin Neurol. 1989 Dec;9(4):281–285. doi: 10.1055/s-2008-1041335. [DOI] [PubMed] [Google Scholar]
  2. Bregman B. S., Kunkel-Bagden E., Schnell L., Dai H. N., Gao D., Schwab M. E. Recovery from spinal cord injury mediated by antibodies to neurite growth inhibitors. Nature. 1995 Nov 30;378(6556):498–501. doi: 10.1038/378498a0. [DOI] [PubMed] [Google Scholar]
  3. Calford M. B., Tweedale R. Immediate and chronic changes in responses of somatosensory cortex in adult flying-fox after digit amputation. Nature. 1988 Mar 31;332(6163):446–448. doi: 10.1038/332446a0. [DOI] [PubMed] [Google Scholar]
  4. Cohen L. G., Bandinelli S., Findley T. W., Hallett M. Motor reorganization after upper limb amputation in man. A study with focal magnetic stimulation. Brain. 1991 Feb;114(Pt 1B):615–627. doi: 10.1093/brain/114.1.615. [DOI] [PubMed] [Google Scholar]
  5. Colebatch J. G., Deiber M. P., Passingham R. E., Friston K. J., Frackowiak R. S. Regional cerebral blood flow during voluntary arm and hand movements in human subjects. J Neurophysiol. 1991 Jun;65(6):1392–1401. doi: 10.1152/jn.1991.65.6.1392. [DOI] [PubMed] [Google Scholar]
  6. Ditunno J. F., Jr, Young W., Donovan W. H., Creasey G. The international standards booklet for neurological and functional classification of spinal cord injury. American Spinal Injury Association. Paraplegia. 1994 Feb;32(2):70–80. doi: 10.1038/sc.1994.13. [DOI] [PubMed] [Google Scholar]
  7. Dykes R. W., Lamour Y. An electrophysiological laminar analysis of single somatosensory neurons in partially deafferented rat hindlimb granular cortex subsequent to transection of the sciatic nerve. Brain Res. 1988 May 24;449(1-2):1–17. doi: 10.1016/0006-8993(88)91019-0. [DOI] [PubMed] [Google Scholar]
  8. Flor H., Elbert T., Knecht S., Wienbruch C., Pantev C., Birbaumer N., Larbig W., Taub E. Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature. 1995 Jun 8;375(6531):482–484. doi: 10.1038/375482a0. [DOI] [PubMed] [Google Scholar]
  9. Friston K. J., Frith C. D., Liddle P. F., Frackowiak R. S. Comparing functional (PET) images: the assessment of significant change. J Cereb Blood Flow Metab. 1991 Jul;11(4):690–699. doi: 10.1038/jcbfm.1991.122. [DOI] [PubMed] [Google Scholar]
  10. Grafton S. T., Woods R. P., Mazziotta J. C. Within-arm somatotopy in human motor areas determined by positron emission tomography imaging of cerebral blood flow. Exp Brain Res. 1993;95(1):172–176. doi: 10.1007/BF00229666. [DOI] [PubMed] [Google Scholar]
  11. Kew J. J., Ridding M. C., Rothwell J. C., Passingham R. E., Leigh P. N., Sooriakumaran S., Frackowiak R. S., Brooks D. J. Reorganization of cortical blood flow and transcranial magnetic stimulation maps in human subjects after upper limb amputation. J Neurophysiol. 1994 Nov;72(5):2517–2524. doi: 10.1152/jn.1994.72.5.2517. [DOI] [PubMed] [Google Scholar]
  12. Levy W. J., Jr, Amassian V. E., Traad M., Cadwell J. Focal magnetic coil stimulation reveals motor cortical system reorganized in humans after traumatic quadriplegia. Brain Res. 1990 Feb 26;510(1):130–134. doi: 10.1016/0006-8993(90)90738-w. [DOI] [PubMed] [Google Scholar]
  13. Raichle M. E., Grubb R. L., Jr, Gado M. H., Eichling J. O., Ter-Pogossian M. M. Correlation between regional cerebral blood flow and oxidative metabolism. In vivo studies in man. Arch Neurol. 1976 Aug;33(8):523–526. doi: 10.1001/archneur.1976.00500080001001. [DOI] [PubMed] [Google Scholar]
  14. Roland P. E., Eriksson L., Stone-Elander S., Widen L. Does mental activity change the oxidative metabolism of the brain? J Neurosci. 1987 Aug;7(8):2373–2389. [PMC free article] [PubMed] [Google Scholar]
  15. Song Z. K., Cohen M. J., Ament P. A., Ho W. H., Vulpe M., Schandler S. L. Two-point discrimination thresholds in spinal cord injured patients with dysesthetic pain. Paraplegia. 1993 Aug;31(8):425–493. doi: 10.1038/sc.1993.79. [DOI] [PubMed] [Google Scholar]
  16. Topka H., Cohen L. G., Cole R. A., Hallett M. Reorganization of corticospinal pathways following spinal cord injury. Neurology. 1991 Aug;41(8):1276–1283. doi: 10.1212/wnl.41.8.1276. [DOI] [PubMed] [Google Scholar]
  17. Waters R. L., Adkins R. H., Yakura J. S., Sie I. Motor and sensory recovery following complete tetraplegia. Arch Phys Med Rehabil. 1993 Mar;74(3):242–247. [PubMed] [Google Scholar]
  18. Yarowsky P. J., Ingvar D. H. Symposium summary. Neuronal activity and energy metabolism. Fed Proc. 1981 Jul;40(9):2353–2362. [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES