Abstract
OBJECTIVES: Carnitine palmitoyltransferase (CPT) deficiency is one of the most common defects of mitochondrial fatty acid oxidation. Two different enzymes (CPT-I and CPT-II) are involved. Due to problems in measuring enzyme activity, relatively little is known about the substrate specificity of each of the human enzymes. This is of considerable importance in the treatment of patients. The objectives were to establish a reliable method for the measurement of CPT activity in whole cells, to use this to characterise the substrate specificity of each enzyme, and finally, to determine if medium chain triglycerides would be of benefit in the treatment of deficient patients. METHODS: A simple permeabilisation technique was used which allows the measurement of CPT activity in a small amount of cultured skin fibroblasts or peripheral blood cells. Using this technique three patients were identified with CPT deficiency. In two of these patients, one with CPT-I deficiency and one with CPT-II deficiency, a complete substrate specificity profile of the mitochondrial carnitine acyltransferases was established for all saturated even chain acyl-CoA esters. RESULTS: For both enzymes the highest CPT activity was with C12-CoA. About 70% of total cellular carnitine octanoyltransferase activity was due to mitochondrial CPT. As CPT is involved in the transport of medium chain fatty acids the metabolic response of a patient with CPT-II deficiency to dietary medium chain triglycerides was assessed. Despite the normal production of ketone bodies there was a significant medium chain dicarboxylic aciduria in the patient, indicating a limited capacity of the CPT independent mitochondrial uptake of medium chain fatty acids. CONCLUSIONS: CPT deficiency can easily be diagnosed in permeabilised cultured skin fibroblasts. Both CPT-I and CPT-II are more active with medium chain length substrates than previously assumed. Care should therefore be taken in the treatment of these patients with medium chain triglycerides.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- A'Bháird N. N., Ramsay R. R. Malonyl-CoA inhibition of peroxisomal carnitine octanoyltransferase. Biochem J. 1992 Sep 1;286(Pt 2):637–640. doi: 10.1042/bj2860637. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bieber L. L. Carnitine. Annu Rev Biochem. 1988;57:261–283. doi: 10.1146/annurev.bi.57.070188.001401. [DOI] [PubMed] [Google Scholar]
- Declercq P. E., Falck J. R., Kuwajima M., Tyminski H., Foster D. W., McGarry J. D. Characterization of the mitochondrial carnitine palmitoyltransferase enzyme system. I. Use of inhibitors. J Biol Chem. 1987 Jul 15;262(20):9812–9821. [PubMed] [Google Scholar]
- Demaugre F., Bonnefont J. P., Mitchell G., Nguyen-Hoang N., Pelet A., Rimoldi M., Di Donato S., Saudubray J. M. Hepatic and muscular presentations of carnitine palmitoyl transferase deficiency: two distinct entities. Pediatr Res. 1988 Sep;24(3):308–311. doi: 10.1203/00006450-198809000-00006. [DOI] [PubMed] [Google Scholar]
- DiMauro S., DiMauro P. M. Muscle carnitine palmityltransferase deficiency and myoglobinuria. Science. 1973 Nov 20;182(4115):929–931. doi: 10.1126/science.182.4115.929. [DOI] [PubMed] [Google Scholar]
- Duran M., Wanders R. J., de Jager J. P., Dorland L., Bruinvis L., Ketting D., Ijlst L., van Sprang F. J. 3-Hydroxydicarboxylic aciduria due to long-chain 3-hydroxyacyl-coenzyme A dehydrogenase deficiency associated with sudden neonatal death: protective effect of medium-chain triglyceride treatment. Eur J Pediatr. 1991 Jan;150(3):190–195. doi: 10.1007/BF01963564. [DOI] [PubMed] [Google Scholar]
- Esser V., Britton C. H., Weis B. C., Foster D. W., McGarry J. D. Cloning, sequencing, and expression of a cDNA encoding rat liver carnitine palmitoyltransferase I. Direct evidence that a single polypeptide is involved in inhibitor interaction and catalytic function. J Biol Chem. 1993 Mar 15;268(8):5817–5822. [PubMed] [Google Scholar]
- Felig P., Wahren J. Fuel homeostasis in exercise. N Engl J Med. 1975 Nov 20;293(21):1078–1084. doi: 10.1056/NEJM197511202932107. [DOI] [PubMed] [Google Scholar]
- Finocchiaro G., Taroni F., Rocchi M., Martin A. L., Colombo I., Tarelli G. T., DiDonato S. cDNA cloning, sequence analysis, and chromosomal localization of the gene for human carnitine palmitoyltransferase. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):661–665. doi: 10.1073/pnas.88.2.661. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GOLDMAN P., VAGELOS P. R. The specificity of triglyceride synthesis from diglycerides in chicken adipose tissue. J Biol Chem. 1961 Oct;236:2620–2623. [PubMed] [Google Scholar]
- Glasgow A. M., Engel A. G., Bier D. M., Perry L. W., Dickie M., Todaro J., Brown B. I., Utter M. F. Hypoglycemia, hepatic dysfunction, muscle weakness, cardiomyopathy, free carnitine deficiency and long-chain acylcarnitine excess responsive to medium chain triglyceride diet. Pediatr Res. 1983 May;17(5):319–326. doi: 10.1203/00006450-198305000-00003. [DOI] [PubMed] [Google Scholar]
- Harrison J., Hodson A. W., Skillen A. W., Stappenbeck R., Agius L., Alberti K. G. Blood glucose, lactate, pyruvate, glycerol, 3-hydroxybutyrate and acetoacetate measurements in man using a centrifugal analyser with a fluorimetric attachment. J Clin Chem Clin Biochem. 1988 Mar;26(3):141–146. doi: 10.1515/cclm.1988.26.3.141. [DOI] [PubMed] [Google Scholar]
- Hug G., Bove K. E., Soukup S. Lethal neonatal multiorgan deficiency of carnitine palmitoyltransferase II. N Engl J Med. 1991 Dec 26;325(26):1862–1864. doi: 10.1056/NEJM199112263252607. [DOI] [PubMed] [Google Scholar]
- Jackson S., Bartlett K., Land J., Moxon E. R., Pollitt R. J., Leonard J. V., Turnbull D. M. Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Pediatr Res. 1991 Apr;29(4 Pt 1):406–411. doi: 10.1203/00006450-199104000-00016. [DOI] [PubMed] [Google Scholar]
- Lilly K., Bugaisky G. E., Umeda P. K., Bieber L. L. The medium-chain carnitine acyltransferase activity associated with rat liver microsomes is malonyl-CoA sensitive. Arch Biochem Biophys. 1990 Jul;280(1):167–174. doi: 10.1016/0003-9861(90)90532-4. [DOI] [PubMed] [Google Scholar]
- Moore R., Glasgow J. F., Bingham M. A., Dodge J. A., Pollitt R. J., Olpin S. E., Middleton B., Carpenter K. Long-chain 3-hydroxyacyl-coenzyme A dehydrogenase deficiency--diagnosis, plasma carnitine fractions and management in a further patient. Eur J Pediatr. 1993 May;152(5):433–436. doi: 10.1007/BF01955905. [DOI] [PubMed] [Google Scholar]
- Mortensen P. B. Formation and degradation of dicarboxylic acids in relation to alterations in fatty acid oxidation in rats. Biochim Biophys Acta. 1992 Feb 20;1124(1):71–79. doi: 10.1016/0005-2760(92)90128-i. [DOI] [PubMed] [Google Scholar]
- Ogilvie I., Pourfarzam M., Jackson S., Stockdale C., Bartlett K., Turnbull D. M. Very long-chain acyl coenzyme A dehydrogenase deficiency presenting with exercise-induced myoglobinuria. Neurology. 1994 Mar;44(3 Pt 1):467–473. doi: 10.1212/wnl.44.3_part_1.467. [DOI] [PubMed] [Google Scholar]
- Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
- Schaefer J., Pourfarzam M., Bartlett K., Jackson S., Turnbull D. M. Fatty acid oxidation in peripheral blood cells: characterization and use for the diagnosis of defects of fatty acid oxidation. Pediatr Res. 1995 Mar;37(3):354–360. doi: 10.1203/00006450-199503000-00017. [DOI] [PubMed] [Google Scholar]
- Singh R., Shepherd I. M., Derrick J. P., Ramsay R. R., Sherratt H. S., Turnbull D. M. A case of carnitine palmitoyltransferase II deficiency in human skeletal muscle. FEBS Lett. 1988 Dec 5;241(1-2):126–130. doi: 10.1016/0014-5793(88)81044-5. [DOI] [PubMed] [Google Scholar]
- Taroni F., Verderio E., Dworzak F., Willems P. J., Cavadini P., DiDonato S. Identification of a common mutation in the carnitine palmitoyltransferase II gene in familial recurrent myoglobinuria patients. Nat Genet. 1993 Jul;4(3):314–320. doi: 10.1038/ng0793-314. [DOI] [PubMed] [Google Scholar]
- Taroni F., Verderio E., Fiorucci S., Cavadini P., Finocchiaro G., Uziel G., Lamantea E., Gellera C., DiDonato S. Molecular characterization of inherited carnitine palmitoyltransferase II deficiency. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8429–8433. doi: 10.1073/pnas.89.18.8429. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tein I., Demaugre F., Bonnefont J. P., Saudubray J. M. Normal muscle CPT1 and CPT2 activities in hepatic presentation patients with CPT1 deficiency in fibroblasts. Tissue specific isoforms of CPT1? J Neurol Sci. 1989 Sep;92(2-3):229–245. doi: 10.1016/0022-510x(89)90139-1. [DOI] [PubMed] [Google Scholar]
- Tonin P., Lewis P., Servidei S., DiMauro S. Metabolic causes of myoglobinuria. Ann Neurol. 1990 Feb;27(2):181–185. doi: 10.1002/ana.410270214. [DOI] [PubMed] [Google Scholar]
- Verderio E., Cavadini P., Montermini L., Wang H., Lamantea E., Finocchiaro G., DiDonato S., Gellera C., Taroni F. Carnitine palmitoyltransferase II deficiency: structure of the gene and characterization of two novel disease-causing mutations. Hum Mol Genet. 1995 Jan;4(1):19–29. doi: 10.1093/hmg/4.1.19. [DOI] [PubMed] [Google Scholar]
- Weis B. C., Esser V., Foster D. W., McGarry J. D. Rat heart expresses two forms of mitochondrial carnitine palmitoyltransferase I. The minor component is identical to the liver enzyme. J Biol Chem. 1994 Jul 22;269(29):18712–18715. [PubMed] [Google Scholar]
- Woeltje K. F., Esser V., Weis B. C., Cox W. F., Schroeder J. G., Liao S. T., Foster D. W., McGarry J. D. Inter-tissue and inter-species characteristics of the mitochondrial carnitine palmitoyltransferase enzyme system. J Biol Chem. 1990 Jun 25;265(18):10714–10719. [PubMed] [Google Scholar]
- Woeltje K. F., Kuwajima M., Foster D. W., McGarry J. D. Characterization of the mitochondrial carnitine palmitoyltransferase enzyme system. II. Use of detergents and antibodies. J Biol Chem. 1987 Jul 15;262(20):9822–9827. [PubMed] [Google Scholar]
