Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 Mar 15;89(6):2461–2465. doi: 10.1073/pnas.89.6.2461

Enhanced sensitivity of hippocampal pyramidal neurons from mdx mice to hypoxia-induced loss of synaptic transmission.

M F Mehler 1, K Z Haas 1, J A Kessler 1, P K Stanton 1
PMCID: PMC48678  PMID: 1549609

Abstract

The gene at the Duchenne/Becker muscular dystrophy locus encodes dystrophin, a member of a protein superfamily that links the actin cytoskeleton to transmembrane plasmalemmal proteins. In mature skeletal myocytes, the absence of dystrophin is associated with decreased membrane stability, altered kinetics of several calcium channels, and increased intracellular calcium concentration. In the central nervous system, dystrophin is restricted to specific neuronal populations that show heightened susceptibility to excitotoxic damage and is localized in proximal dendrites and the neuronal somata. We report that CA1 pyramidal neurons in a hippocampal slice preparation from a dystrophin-deficient mouse genetic model of Duchenne muscular dystrophy (the mdx mouse) exhibit significant increased susceptibility to hypoxia-induced damage to synaptic transmission. This selective vulnerability was substantially ameliorated by pretreatment with diphenylhydantoin, an anticonvulsant that blocks both sodium-dependent action potentials and low-threshold transient calcium conductances. These findings suggest that dystrophin deficiency could predispose susceptible neuronal populations to cumulative hypoxic insults that may contribute to the development of cognitive deficits in Duchenne/Becker muscular dystrophy patients and that the effects of such periods of hypoxia may be pharmacologically remediable.

Full text

PDF
2461

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson S. W., Routh D. K., Ionasescu V. V. Serial position memory of boys with Duchenne muscular dystrophy. Dev Med Child Neurol. 1988 Jun;30(3):328–333. doi: 10.1111/j.1469-8749.1988.tb14557.x. [DOI] [PubMed] [Google Scholar]
  2. Bennett V. Spectrin-based membrane skeleton: a multipotential adaptor between plasma membrane and cytoplasm. Physiol Rev. 1990 Oct;70(4):1029–1065. doi: 10.1152/physrev.1990.70.4.1029. [DOI] [PubMed] [Google Scholar]
  3. Boyce F. M., Beggs A. H., Feener C., Kunkel L. M. Dystrophin is transcribed in brain from a distant upstream promoter. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1276–1280. doi: 10.1073/pnas.88.4.1276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Campbell K. P., Kahl S. D. Association of dystrophin and an integral membrane glycoprotein. Nature. 1989 Mar 16;338(6212):259–262. doi: 10.1038/338259a0. [DOI] [PubMed] [Google Scholar]
  5. Choi D. W. Methods for antagonizing glutamate neurotoxicity. Cerebrovasc Brain Metab Rev. 1990 Summer;2(2):105–147. [PubMed] [Google Scholar]
  6. Corbetta M., Miezin F. M., Dobmeyer S., Shulman G. L., Petersen S. E. Selective and divided attention during visual discriminations of shape, color, and speed: functional anatomy by positron emission tomography. J Neurosci. 1991 Aug;11(8):2383–2402. doi: 10.1523/JNEUROSCI.11-08-02383.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Courchesne E., Yeung-Courchesne R., Press G. A., Hesselink J. R., Jernigan T. L. Hypoplasia of cerebellar vermal lobules VI and VII in autism. N Engl J Med. 1988 May 26;318(21):1349–1354. doi: 10.1056/NEJM198805263182102. [DOI] [PubMed] [Google Scholar]
  8. Deyo R. A., Straube K. T., Disterhoft J. F. Nimodipine facilitates associative learning in aging rabbits. Science. 1989 Feb 10;243(4892):809–811. doi: 10.1126/science.2916127. [DOI] [PubMed] [Google Scholar]
  9. Dorman C., Hurley A. D., D'Avignon J. Language and learning disorders of older boys with Duchenne muscular dystrophy. Dev Med Child Neurol. 1988 Jun;30(3):316–327. doi: 10.1111/j.1469-8749.1988.tb14556.x. [DOI] [PubMed] [Google Scholar]
  10. Ervasti J. M., Ohlendieck K., Kahl S. D., Gaver M. G., Campbell K. P. Deficiency of a glycoprotein component of the dystrophin complex in dystrophic muscle. Nature. 1990 May 24;345(6273):315–319. doi: 10.1038/345315a0. [DOI] [PubMed] [Google Scholar]
  11. Feener C. A., Koenig M., Kunkel L. M. Alternative splicing of human dystrophin mRNA generates isoforms at the carboxy terminus. Nature. 1989 Apr 6;338(6215):509–511. doi: 10.1038/338509a0. [DOI] [PubMed] [Google Scholar]
  12. Fong P. Y., Turner P. R., Denetclaw W. F., Steinhardt R. A. Increased activity of calcium leak channels in myotubes of Duchenne human and mdx mouse origin. Science. 1990 Nov 2;250(4981):673–676. doi: 10.1126/science.2173137. [DOI] [PubMed] [Google Scholar]
  13. Franco A., Jr, Lansman J. B. Calcium entry through stretch-inactivated ion channels in mdx myotubes. Nature. 1990 Apr 12;344(6267):670–673. doi: 10.1038/344670a0. [DOI] [PubMed] [Google Scholar]
  14. Ginjaar I. B., Bakker E., den Dunnen J. T., Wessels A., van Paassen M. M., Kloosterman M. D., Zubrzycka-Gaarn E. E., Fischbeck K. H., Moorman A. F., van Ommen G. J. Detection of truncated dystrophin in fetal DMD myotubes. Adv Exp Med Biol. 1990;280:17–23. doi: 10.1007/978-1-4684-5865-7_4. [DOI] [PubMed] [Google Scholar]
  15. Haas H. L., Schaerer B., Vosmansky M. A simple perfusion chamber for the study of nervous tissue slices in vitro. J Neurosci Methods. 1979 Dec;1(4):323–325. doi: 10.1016/0165-0270(79)90021-9. [DOI] [PubMed] [Google Scholar]
  16. Haws C. M., Lansman J. B. Calcium-permeable ion channels in cerebellar neurons from mdx mice. Proc Biol Sci. 1991 Jun 22;244(1311):185–189. doi: 10.1098/rspb.1991.0068. [DOI] [PubMed] [Google Scholar]
  17. Horwitz B., Rumsey J. M., Grady C. L., Rapoport S. I. The cerebral metabolic landscape in autism. Intercorrelations of regional glucose utilization. Arch Neurol. 1988 Jul;45(7):749–755. doi: 10.1001/archneur.1988.00520310055018. [DOI] [PubMed] [Google Scholar]
  18. Isaacson R. L., Johnston J. E., Vargas D. M. The effect of a calcium antagonist on the retention of simple associational learning. Physiol Behav. 1988;42(5):447–452. doi: 10.1016/0031-9384(88)90174-6. [DOI] [PubMed] [Google Scholar]
  19. Jørgensen M. B., Johansen F. F., Diemer N. H. Removal of the entorhinal cortex protects hippocampal CA-1 neurons from ischemic damage. Acta Neuropathol. 1987;73(2):189–194. doi: 10.1007/BF00693788. [DOI] [PubMed] [Google Scholar]
  20. Lidov H. G., Byers T. J., Watkins S. C., Kunkel L. M. Localization of dystrophin to postsynaptic regions of central nervous system cortical neurons. Nature. 1990 Dec 20;348(6303):725–728. doi: 10.1038/348725a0. [DOI] [PubMed] [Google Scholar]
  21. Manni R., Ottolini A., Cerveri I., Bruschi C., Zoia M. C., Lanzi G., Tartara A. Breathing patterns and HbSaO2 changes during nocturnal sleep in patients with Duchenne muscular dystrophy. J Neurol. 1989 Oct;236(7):391–394. doi: 10.1007/BF00314896. [DOI] [PubMed] [Google Scholar]
  22. Meldrum B., Garthwaite J. Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends Pharmacol Sci. 1990 Sep;11(9):379–387. doi: 10.1016/0165-6147(90)90184-a. [DOI] [PubMed] [Google Scholar]
  23. Menke A., Jockusch H. Decreased osmotic stability of dystrophin-less muscle cells from the mdx mouse. Nature. 1991 Jan 3;349(6304):69–71. doi: 10.1038/349069a0. [DOI] [PubMed] [Google Scholar]
  24. Mesulam M. M. A cortical network for directed attention and unilateral neglect. Ann Neurol. 1981 Oct;10(4):309–325. doi: 10.1002/ana.410100402. [DOI] [PubMed] [Google Scholar]
  25. Mesulam M. M. Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann Neurol. 1990 Nov;28(5):597–613. doi: 10.1002/ana.410280502. [DOI] [PubMed] [Google Scholar]
  26. Miike T., Sugino S., Ohtani Y., Taku K., Yoshioka K. Vascular endothelial cell injury and platelet embolism in Duchenne muscular dystrophy at the preclinical stage. J Neurol Sci. 1987 Dec;82(1-3):67–80. doi: 10.1016/0022-510x(87)90007-4. [DOI] [PubMed] [Google Scholar]
  27. Mongini T., Ghigo D., Doriguzzi C., Bussolino F., Pescarmona G., Pollo B., Schiffer D., Bosia A. Free cytoplasmic Ca++ at rest and after cholinergic stimulus is increased in cultured muscle cells from Duchenne muscular dystrophy patients. Neurology. 1988 Mar;38(3):476–480. doi: 10.1212/wnl.38.3.476. [DOI] [PubMed] [Google Scholar]
  28. Morgan J. E., Hoffman E. P., Partridge T. A. Normal myogenic cells from newborn mice restore normal histology to degenerating muscles of the mdx mouse. J Cell Biol. 1990 Dec;111(6 Pt 1):2437–2449. doi: 10.1083/jcb.111.6.2437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nudel U., Zuk D., Einat P., Zeelon E., Levy Z., Neuman S., Yaffe D. Duchenne muscular dystrophy gene product is not identical in muscle and brain. Nature. 1989 Jan 5;337(6202):76–78. doi: 10.1038/337076a0. [DOI] [PubMed] [Google Scholar]
  30. Posner M. I., Petersen S. E. The attention system of the human brain. Annu Rev Neurosci. 1990;13:25–42. doi: 10.1146/annurev.ne.13.030190.000325. [DOI] [PubMed] [Google Scholar]
  31. Pulsinelli W. A., Brierley J. B. A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke. 1979 May-Jun;10(3):267–272. doi: 10.1161/01.str.10.3.267. [DOI] [PubMed] [Google Scholar]
  32. Pulsinelli W. A., Brierley J. B., Plum F. Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol. 1982 May;11(5):491–498. doi: 10.1002/ana.410110509. [DOI] [PubMed] [Google Scholar]
  33. Pulsinelli W. A., Duffy T. E. Regional energy balance in rat brain after transient forebrain ischemia. J Neurochem. 1983 May;40(5):1500–1503. doi: 10.1111/j.1471-4159.1983.tb13599.x. [DOI] [PubMed] [Google Scholar]
  34. Rojas C. V., Hoffman E. P. Recent advances in dystrophin research. Curr Opin Neurobiol. 1991 Oct;1(3):420–429. doi: 10.1016/0959-4388(91)90064-e. [DOI] [PubMed] [Google Scholar]
  35. Rosman N. P., Kakulas B. A. Mental deficiency associated with muscular dystrophy. A neuropathological study. Brain. 1966 Dec;89(4):769–788. doi: 10.1093/brain/89.4.769. [DOI] [PubMed] [Google Scholar]
  36. Sicinski P., Geng Y., Ryder-Cook A. S., Barnard E. A., Darlison M. G., Barnard P. J. The molecular basis of muscular dystrophy in the mdx mouse: a point mutation. Science. 1989 Jun 30;244(4912):1578–1580. doi: 10.1126/science.2662404. [DOI] [PubMed] [Google Scholar]
  37. Smith P. E., Calverley P. M., Edwards R. H. Hypoxemia during sleep in Duchenne muscular dystrophy. Am Rev Respir Dis. 1988 Apr;137(4):884–888. doi: 10.1164/ajrccm/137.4.884. [DOI] [PubMed] [Google Scholar]
  38. Sollee N. D., Latham E. E., Kindlon D. J., Bresnan M. J. Neuropsychological impairment in Duchenne muscular dystrophy. J Clin Exp Neuropsychol. 1985 Oct;7(5):486–496. doi: 10.1080/01688638508401280. [DOI] [PubMed] [Google Scholar]
  39. Srinivasan Y., Elmer L., Davis J., Bennett V., Angelides K. Ankyrin and spectrin associate with voltage-dependent sodium channels in brain. Nature. 1988 May 12;333(6169):177–180. doi: 10.1038/333177a0. [DOI] [PubMed] [Google Scholar]
  40. Stanton P. K., Mody I., Heinemann U. A role for N-methyl-D-aspartate receptors in norepinephrine-induced long-lasting potentiation in the dentate gyrus. Exp Brain Res. 1989;77(3):517–530. doi: 10.1007/BF00249605. [DOI] [PubMed] [Google Scholar]
  41. Stanton P. K., Moskal J. R. Diphenylhydantoin protects against hypoxia-induced impairment of hippocampal synaptic transmission. Brain Res. 1991 Apr 19;546(2):351–354. doi: 10.1016/0006-8993(91)91501-q. [DOI] [PubMed] [Google Scholar]
  42. Stringer J. L., Lothman E. W. Phenytoin does not block hippocampal long-term potentiation or frequency potentiation. Ann Neurol. 1988 Mar;23(3):281–286. doi: 10.1002/ana.410230311. [DOI] [PubMed] [Google Scholar]
  43. Taft W. C., Clifton G. L., Blair R. E., DeLorenzo R. J. Phenytoin protects against ischemia-produced neuronal cell death. Brain Res. 1989 Mar 27;483(1):143–148. doi: 10.1016/0006-8993(89)90045-0. [DOI] [PubMed] [Google Scholar]
  44. Turner P. R., Westwood T., Regen C. M., Steinhardt R. A. Increased protein degradation results from elevated free calcium levels found in muscle from mdx mice. Nature. 1988 Oct 20;335(6192):735–738. doi: 10.1038/335735a0. [DOI] [PubMed] [Google Scholar]
  45. Twombly D. A., Yoshii M., Narahashi T. Mechanisms of calcium channel block by phenytoin. J Pharmacol Exp Ther. 1988 Jul;246(1):189–195. [PubMed] [Google Scholar]
  46. Weller B., Karpati G., Carpenter S. Dystrophin-deficient mdx muscle fibers are preferentially vulnerable to necrosis induced by experimental lengthening contractions. J Neurol Sci. 1990 Dec;100(1-2):9–13. doi: 10.1016/0022-510x(90)90005-8. [DOI] [PubMed] [Google Scholar]
  47. Wessels A., Ginjaar I. B., Moorman A. F., van Ommen G. J. Different localization of dystrophin in developing and adult human skeletal muscle. Muscle Nerve. 1991 Jan;14(1):1–7. doi: 10.1002/mus.880140102. [DOI] [PubMed] [Google Scholar]
  48. Westenbroek R. E., Ahlijanian M. K., Catterall W. A. Clustering of L-type Ca2+ channels at the base of major dendrites in hippocampal pyramidal neurons. Nature. 1990 Sep 20;347(6290):281–284. doi: 10.1038/347281a0. [DOI] [PubMed] [Google Scholar]
  49. Whelan T. B. Neuropsychological performance of children with Duchenne muscular dystrophy and spinal muscle atrophy. Dev Med Child Neurol. 1987 Apr;29(2):212–220. doi: 10.1111/j.1469-8749.1987.tb02138.x. [DOI] [PubMed] [Google Scholar]
  50. Yaari Y., Selzer M. E., Pincus J. H. Phenytoin: mechanisms of its anticonvulsant action. Ann Neurol. 1986 Aug;20(2):171–184. doi: 10.1002/ana.410200202. [DOI] [PubMed] [Google Scholar]
  51. Zametkin A. J., Nordahl T. E., Gross M., King A. C., Semple W. E., Rumsey J., Hamburger S., Cohen R. M. Cerebral glucose metabolism in adults with hyperactivity of childhood onset. N Engl J Med. 1990 Nov 15;323(20):1361–1366. doi: 10.1056/NEJM199011153232001. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES