Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 Mar 15;89(6):2480–2484. doi: 10.1073/pnas.89.6.2480

Localization, conjugation, and function of salicylic acid in tobacco during the hypersensitive reaction to tobacco mosaic virus.

A J Enyedi 1, N Yalpani 1, P Silverman 1, I Raskin 1
PMCID: PMC48682  PMID: 1549613

Abstract

Salicylic acid (SA) is hypothesized to be a natural signal that triggers the systemic induction of pathogenesis-related proteins and disease resistance in tobacco. When Xanthi-nc (NN genotype) tobacco was inoculated with tobacco mosaic virus (TMV) there was an increase in endogenous SA in both inoculated and virus-free leaves. The highest levels of SA were detected in and around necrotic lesions that formed in response to TMV. Chemical and enzymatic hydrolysis of extracts from TMV-inoculated leaves demonstrated the presence of a SA conjugate tentatively identified as O-beta-D-glucosyl-SA. The SA conjugate was detected only in leaves that contained necrotic lesions and was not detected in phloem exudates or uninoculated leaves of TMV-inoculated Xanthi-nc tobacco. When exogenous SA was fed to excised tobacco leaves, it was metabolized within 10 hr. However, this reduction in free SA did not prevent the subsequent accumulation of the PR-1 family of pathogenesis-related proteins. The absence of SA accumulation in TMV-inoculated tobacco plants incubated at 32 degrees C was not a result of the glucosylation of SA. The addition of SA to the medium elevated levels of SA in the leaves of virus-free tobacco grown hydroponically. Increasing the endogenous level of SA in leaves to those naturally observed during systemic acquired resistance resulted in increased resistance to TMV, expressed as a reduction in lesion area. These data further support the hypothesis that SA is a likely natural inducer of pathogenesis-related proteins and systemic acquired resistance in TMV-inoculated Xanthi-nc tobacco.

Full text

PDF
2480

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ben-Tal Y., Cleland C. F. Uptake and Metabolism of [C]Salicylic Acid in Lemna gibba G3. Plant Physiol. 1982 Jul;70(1):291–296. doi: 10.1104/pp.70.1.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Corner J. J., Swain T. Enzymatic synthesis of the sugar esters of hydroxy-aromatic acids. Nature. 1965 Aug 7;207(997):634–635. doi: 10.1038/207634b0. [DOI] [PubMed] [Google Scholar]
  3. Malamy J., Carr J. P., Klessig D. F., Raskin I. Salicylic Acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science. 1990 Nov 16;250(4983):1002–1004. doi: 10.1126/science.250.4983.1002. [DOI] [PubMed] [Google Scholar]
  4. Métraux J. P., Signer H., Ryals J., Ward E., Wyss-Benz M., Gaudin J., Raschdorf K., Schmid E., Blum W., Inverardi B. Increase in salicylic Acid at the onset of systemic acquired resistance in cucumber. Science. 1990 Nov 16;250(4983):1004–1006. doi: 10.1126/science.250.4983.1004. [DOI] [PubMed] [Google Scholar]
  5. ROSS A. F. Localized acquired resistance to plant virus infection in hypersensitive hosts. Virology. 1961 Jul;14:329–339. doi: 10.1016/0042-6822(61)90318-x. [DOI] [PubMed] [Google Scholar]
  6. ROSS A. F. Systemic acquired resistance induced by localized virus infections in plants. Virology. 1961 Jul;14:340–358. doi: 10.1016/0042-6822(61)90319-1. [DOI] [PubMed] [Google Scholar]
  7. Raskin I., Ehmann A., Melander W. R., Meeuse B. J. Salicylic Acid: a natural inducer of heat production in arum lilies. Science. 1987 Sep 25;237(4822):1601–1602. doi: 10.1126/science.237.4822.1601. [DOI] [PubMed] [Google Scholar]
  8. Raskin I., Turner I. M., Melander W. R. Regulation of heat production in the inflorescences of an Arum lily by endogenous salicylic acid. Proc Natl Acad Sci U S A. 1989 Apr;86(7):2214–2218. doi: 10.1073/pnas.86.7.2214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Rasmussen J. B., Hammerschmidt R., Zook M. N. Systemic Induction of Salicylic Acid Accumulation in Cucumber after Inoculation with Pseudomonas syringae pv syringae. Plant Physiol. 1991 Dec;97(4):1342–1347. doi: 10.1104/pp.97.4.1342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ward E. R., Uknes S. J., Williams S. C., Dincher S. S., Wiederhold D. L., Alexander D. C., Ahl-Goy P., Metraux J. P., Ryals J. A. Coordinate Gene Activity in Response to Agents That Induce Systemic Acquired Resistance. Plant Cell. 1991 Oct;3(10):1085–1094. doi: 10.1105/tpc.3.10.1085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Yalpani N., Silverman P., Wilson T. M., Kleier D. A., Raskin I. Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacco. Plant Cell. 1991 Aug;3(8):809–818. doi: 10.1105/tpc.3.8.809. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES