Skip to main content
SpringerPlus logoLink to SpringerPlus
. 2016 May 17;5:635. doi: 10.1186/s40064-016-2215-4

On new inequalities of Hermite–Hadamard–Fejer type for harmonically convex functions via fractional integrals

Mehmet Kunt 1,, İmdat İşcan 2, Nazlı Yazıcı 1, Uğur Gözütok 1
PMCID: PMC4870551  PMID: 27330901

Abstract

In this paper, firstly, new Hermite–Hadamard type inequalities for harmonically convex functions in fractional integral forms are given. Secondly, Hermite–Hadamard–Fejer inequalities for harmonically convex functions in fractional integral forms are built. Finally, an integral identity and some Hermite–Hadamard–Fejer type integral inequalities for harmonically convex functions in fractional integral forms are obtained. Some results presented here provide extensions of others given in earlier works.

Keywords: Hermite–Hadamard inequality, Hermite–Hadamard–Fejer inequality, Riemann–Liouville fractional integrals, Harmonically convex functions

Background

Let f:IRR be a convex function defined on the interval I of real numbers and a,bI. The inequality

fa+b21b-aabf(x)dxf(a)+f(b)2 1

is well known in the literature as Hermite–Hadamard’s inequality (Hadamard 1893; Hermite 1883).

The most well-known inequalities related to the integral mean of a convex function f are the Hermite Hadamard inequalities or their weighted versions, the so-called Hermite–Hadamard-Fejér inequalities.

Fejér (1906) established the following Fejér inequality which is the weighted generalization of Hermite–Hadamard inequality (1):

Theorem 1

Letf:a,bRbe a convex function. Then the inequality

fa+b2abg(x)dxabf(x)g(x)dxf(a)+f(b)2abg(x)dx 2

holds, whereg:a,bRis nonnegative, integrable and symmetric to(a+b)/2.

For some results which generalize, improve and extend the inequalities (1) and (2) see Bombardelli and Varošanec (1869), İşcan (2013a, 2014c), Minculete and Mitroi (2012), Sarıkaya (2012), Tseng et al. (2011).

We recall the following inequality and special functions which are known as Beta and hypergeometric function respectively:

βx,y=ΓxΓyΓx+y=01tx-11-ty-1dt,x,y>0,2F1a,b;c;z=1βb,c-b01tb-11-tc-b-11-zt-adt,c>b>0,z<1see Kilbas et al. 2006.

Lemma 1

(Prudnikov et al. 1981; Wang et al. 2013) For0<α1and0a<bwe have

aα-bαb-aα.

The following definitions and mathematical preliminaries of fractional calculus theory are used further in this paper.

Definition 1

(Kilbas et al. 2006) Let fLa,b. The Riemann–Liouville integrals Ja+αf and Jb-αf of oder α>0 with a0 are defined by

Ja+αf(x)=1Γ(α)axx-tα-1f(t)dt,x>a

and

Jb-αf(x)=1Γ(α)xbt-xα-1f(t)dt,x<b

respectively, where Γ(α) is the Gamma function defined by Γ(α)=0e-ttα-1dt and Ja+0f(x)=Jb-0f(x)=f(x).

Because of the wide application of Hermite–Hadamard type inequalities and fractional integrals, many researchers extend their studies to Hermite–Hadamard type inequalities involving fractional integrals not limited to integer integrals. Recently, more and more Hermite–Hadamard inequalities involving fractional integrals have been obtained for different classes of functions; see Dahmani (2010), İşcan (2013b, 2014a), İşcan and Wu (2014), Mihai and Ion (2014), Sarıkaya et al. (2013), Wang et al. (2012), Wang et al. (2013).

İşcan (2014b) can defined the so-called harmonically convex functions and established following Hermite–Hadamard type inequality for them as follows:

Definition 2

Let IR\0 be a real interval. A function f:IR is said to be harmonically convex, if

fxytx+1-tytfy+1-tfx 3

for all x,yI and t0,1. If the inequality in (3) is reversed, then f is said to be harmonically concave.

Theorem 2

(İşcan 2014b) Letf:IR\0Rbe a harmonically convex function anda,bI. IffLa,bthen the following inequalities holds:

f2aba+babb-aabfxx2dxfa+fb2. 4

Latif et al. (2015) gave the following definition:

Definition 3

A function g:a,bR\0R is said to be harmonically symmetric with respect to 2ab/a+b if

gx=g11a+1b-1x

holds for all xa,b.

Chen and Wu (2014) presented a Hermite–Hadamard–Fejer type inequality for harmonically convex functions as follows:

Theorem 3

Letf:IR\0Rbe a harmonically convex function anda,bI. IffLa,b and g:a,bR\0Ris nonnegative, integrable and harmonically symmetric with respect to2aba+b, then

f2aba+babgxx2dxabfxgxx2dxfa+fb2abgxx2dx. 5

In this paper, we give new Hermite–Hadamard type inequalities for harmonically convex functions in fractional integral forms. We establish new Hermite–Hadamard–Fejer inequalities for harmonically convex functions in fractional integral forms. We obtain an integral identity and some Hermite–Hadamard–Fejer type integral inequalities for harmonically convex functions in fractional integral forms.

Main results

Throughout this section, we write g=supta,bg(t), for the continuous function g:a,bR.

Lemma 2

Ifg:a,bR\0Ris integrable and harmonically symmetric with respect to2aba+b, then

Ja+b2ab+αgh(1/a)=Ja+b2ab-αgh(1/b)=12Ja+b2ab+αgh(1/a)+Ja+b2ab-αgh(1/b)

withα>0andh(x)=1/x, x1b,1a.

Proof

Since g is harmonically symmetric with respect to 2aba+b, using Definition 3 we have g1x=g1(1a)+(1b)-x, for all x1b,1a. Hence, in the following integral setting t=1a)+(1b-x and dt=-dx gives

Ja+b2ab+αgh(1/a)=1Γ(α)a+b2ab1a1a-tα-1g1tdt=1Γ(α)1ba+b2abx-1bα-1g1(1/a)+(1/b)-xdx=1Γ(α)1ba+b2abx-1bα-1g1xdx=Ja+b2ab-αgh(1/b).

This completes the proof.

Theorem 4

Letf:I0,Rbe a function such thatfLa,b, wherea,bI. Iffis a harmonically convex function ona,b, then the following inequalities for fractional integrals holds:

f2aba+bΓα+121-αabb-aαJa+b2ab+αfh1/a+Ja+b2ab-αfh1/bfa+fb2 6

withα>0andh(x)=1/x, x1b,1a.

Proof

Since f is a harmonically convex function on a,b, we have for all t0,1

f2aba+b=f2abta+(1-t)babtb+(1-t)aabta+(1-t)b+abtb+(1-t)afabta+(1-t)b+fabtb+(1-t)a2. 7

Multiplying both sides of (7) by 2tα-1, then integrating the resulting inequality with respect to t over 0,12, we obtain

2f2aba+b012tα-1dt012tα-1fabta+(1-t)b+fabtb+(1-t)adt=012tα-1fabta+(1-t)bdt+012tα-1fabtb+(1-t)adt.

Setting x=tb+(1-t)aab and dx=b-aabdt gives

21-ααf2aba+babb-aα1ba+b2abx-1bα-1f11a+1b-xdx+1ba+b2abx-1bα-1f1xdx=abb-aαa+b2ab1a1a-xα-1f1xdx+1ba+b2abx-1bα-1f1xdx=abb-aαΓ(α)Ja+b2ab+αfh(1/a)+Ja+b2ab-αfh(1/b)

and the first inequality is proved.

For the proof of the second inequality in (6), we first note that, if f is a harmonically convex function, then, for all t0,1, it yields

fabta+(1-t)b+fabtb+(1-t)af(a)+f(b). 8

Then multiplying both sides of (8) by tα-1 and integrating the resulting inequality with respect to t over 0,12, we obtain

012tα-1fabta+(1-t)bdt+012tα-1fabtb+(1-t)adtf(a)+f(b)012tα-1dt=21-ααf(a)+f(b)2

i.e.

abb-aαΓ(α)Ja+b2ab+αfh(1/a)+Ja+b2ab-αfh(1/b)21-ααf(a)+f(b)2.

The proof is completed.

Theorem 5

Letf:a,bRbe a harmonicallyconvex function witha<bandfLa,b. Ifg:a,bRis nonnegative, integrable and harmonically symmetric with respect to2aba+b, then the following inequalities for fractional integrals holds:

f2aba+bJa+b2ab+αgh(1/a)+Ja+b2ab-αgh(1/b)Ja+b2ab+αfgh(1/a)+Ja+b2ab-αfgh(1/b)f(a)+f(b)2Ja+b2ab+αgh(1/a)+Ja+b2ab-αgh(1/b) 9

withα>0andh(x)=1/x, x1b,1a.

Proof

Since f is a harmonically convex function on a,b, multiplying both sides of (7) by 2tα-1gabtb+(1-t)a, then integrating the resulting inequality with respect to t over 0,12, we obtain

2f2aba+b012tα-1gabtb+(1-t)adt012tα-1fabta+(1-t)b+fabtb+(1-t)agabtb+(1-t)adt=012tα-1fabta+(1-t)bgabtb+(1-t)adt+012tα-1fabtb+(1-t)agabtb+(1-t)adt.

Since g is harmonically symmetric with respect to 2aba+b, using Definition 3 we have g1x=g1(1a)+(1b)-x, for all x1b,1a. Setting x=tb+(1-t)aab and dx=b-aabdt gives

2abb-aαf2aba+b1ba+b2abx-1bα-1g1xdxabb-aα1ba+b2abx-1bα-1f11a+1b-xg1xdx+1ba+b2abx-1bα-1f1xg1xdx=abb-aαa+b2ab1a1a-xα-1f1xg11a+1b-xdx+1ba+b2abx-1bα-1f1xg1xdx=abb-aαa+b2ab1a1a-xα-1f1xg1xdx+1ba+b2abx-1bα-1f1xg1xdx.

Therefore, by Lemma 2 we have

abb-aαΓ(α)f2aba+bJa+b2ab+αgh(1/a)+Ja+b2ab-αgh(1/b)abb-aαΓ(α)Ja+b2ab+αfgh(1/a)+Ja+b2ab-αfgh(1/b)

and the first inequality is proved.

For the proof of the second inequality in (9) we first note that if f is a harmonically convex function, then, multiplying both sides of (8) by tα-1gabtb+(1-t)a and integrating the resulting inequality with respect to t over 0,12, we obtain

012tα-1fabta+(1-t)bgabtb+(1-t)adt+012tα-1fabtb+(1-t)agabtb+(1-t)adtf(a)+f(b)012tα-1gabtb+(1-t)adt

i.e.

abb-aαΓ(α)Ja+b2ab+αfgh(1/a)+Ja+b2ab-αfgh(1/b)abb-aαΓ(α)f(a)+f(b)2Ja+b2ab+αgh(1/a)+Ja+b2ab-αgh(1/b).

The proof is completed.

Remark 1

In Theorem 5,

  • (i)

    if we take α=1, then inequality (9) becomes inequality (5) of Theorem 3.

  • (ii)

    if we take g(x)=1, then inequality (9) becomes inequality (6) of Theorem 4.

  • (iii)

    if we take α=1 and g(x)=1, then inequality (9) becomes inequality (4) of Theorem 2.

Lemma 3

Letf:I0,Rbe a differentiable function onI, the interior of I, such that fLa,b, wherea,bI. If g:a,bRis integrable and harmonically symmetric with respect to2aba+b, then the following equality for fractional integrals holds:

f2aba+bJa+b2ab+αgh(1/a)+Ja+b2ab-αgh(1/b)-Ja+b2ab+αfgh(1/a)+Ja+b2ab-αfgh(1/b)=1Γ(α)1ba+b2ab1bts-1bα-1gh(s)dsfh(t)dt-a+b2ab1at1a1a-sα-1gh(s)dsfh(t)dt 10

with α>0and h(x)=1/x, x1b,1a.

Proof

It suffices to note that

I=1ba+b2ab1bts-1bα-1gh(s)dsfh(t)dt-a+b2ab1at1a1a-sα-1gh(s)dsfh(t)dt=I1-I2.

By integration by parts and Lemma 2 we get

I1=1bts-1bα-1gh(s)dsfh(t)1ba+b2ab-1ba+b2abt-1bα-1gh(t)fh(t)dt=1ba+b2abs-1bα-1gh(s)dsf2aba+b-1ba+b2abt-1bα-1gh(t)fh(t)dt=Γ(α)f2aba+bJa+b2ab-αgh(1/b)-Ja+b2ab-αfgh(1/b)=Γ(α)f2aba+b2Ja+b2ab+αgh(1/a)+Ja+b2ab-αgh(1/b)-Ja+b2ab-αfgh(1/b)

and similarly

I2=t1a1a-sα-1gh(s)dsfh(t)a+b2ab1a+a+b2ab1a1a-tα-1gh(t)fh(t)dt=-a+b2ab1a1a-sα-1gh(s)dsf2aba+b+a+b2ab1a1a-tα-1gh(t)fh(t)dt=Γ(α)-f(2aba+b)Ja+b2ab+αgh(1/a)+Ja+b2ab+αfgh(1/a)=Γ(α)-f(2aba+b)2Ja+b2ab+αgh(1/a)+Ja+b2ab-αgh(1/b)+Ja+b2ab+αfgh(1/a).

Thus, we can write

I=I1-I2=Γ(α)f2aba+bJa+b2ab+αgh(1/a)+Ja+b2ab-αgh(1/b)-Ja+b2ab+αfgh(1/a)+Ja+b2ab-αfgh(1/b).

Multiplying both sides by Γ(α)-1 we obtain (10). This completes the proof.

Theorem 6

Letf:I0,Rbe a differentiable function onI, the interior ofI, such thatfLa,b, wherea,bIanda<b. Iffis harmonically convex ona,b, g:a,bRis continuous and harmonically symmetric with respect to2aba+b, then the following inequality for fractional integrals holds:

f2aba+bJa+b2ab+αgh(1/a)+Ja+b2ab-αgh(1/b)-Ja+b2ab+αfgh(1/a)+Ja+b2ab-αfgh(1/b)gabb-aΓ(α+1)b-aabαC1αfa+C2αfb 11

where

C1α=b-2α+1α+22F12,α+1;α+3;1-ab-a+b-2α+1α+22F12,α+1;α+3;b-ab+a,C2α=b-2α+22F12,α+2;α+3;1-ab-2a+b-2α+12F12,α+1;α+2;b-ab+a+a+b-2α+1α+22F12,α+1;α+3;b-ab+a,

with0<α1andh(x)=1/x, x1b,1a.

Proof

From Lemma 3 we have

f2aba+bJa+b2ab+αgh(1/a)+Ja+b2ab-αgh(1/b)-Ja+b2ab+αfgh(1/a)+Ja+b2ab-αfgh(1/b)1Γ(α)1ba+b2ab1bts-1bα-1gh(s)dsfh(t)dt+a+b2ab1at1a1a-sα-1gh(s)dsfh(t)dtgΓ(α)1ba+b2ab1bts-1bα-1dsfh(t)dt+a+b2ab1at1a1a-sα-1dsfh(t)dt=gΓ(α)1ba+b2abt-1bαα1t2f(1t)dt+a+b2ab1a1a-tαα1t2f(1t)dt.

Setting t=ub+(1-u)aab and dt=b-aabdu gives

f2aba+bJa+b2ab+αgh(1/a)+Ja+b2ab-αgh(1/b)-Ja+b2ab+αfgh(1/a)+Ja+b2ab-αfgh(1/b)gabb-aΓ(α+1)b-aabα012uαub+1-ua2f(abub+1-ua)du+1211-uαub+1-ua2fabub+1-uadu. 12

Since f is harmonically convex on a,b, we have

fabub+(1-u)atufa+1-ufb. 13

If we use (13) in (12) , we have

f2aba+bJa+b2ab+αgh(1/a)+Ja+b2ab-αgh(1/b)-Ja+b2ab+αfgh(1/a)+Ja+b2ab-αfgh(1/b)gabb-aΓ(α+1)b-aabα×012uαub+1-ua2ufa+1-ufbdu+1211-uαub+1-ua2ufa+1-ufbdu. 14

Calculating the following integrals by Lemma 1, we have

012uα+1ub+(1-u)a2du+1211-uαuub+(1-u)a2du=011-uαuub+(1-u)a2du-0121-uα-uαub+(1-u)a2udu011-uαuub+(1-u)a2du-0121-2uαub+(1-u)a2udu=011-uαuub+(1-u)a2du-14011-uαu2b+(1-u2)a2udu=011-uuαb-21-u1-ab-2du-14011-vvαa+b2-21-vb-ab+a-2dv=b-2α+1α+22F12,α+1;α+3;1-ab-a+b-2α+1α+22F12,α+1;α+3;b-ab+a=C1α 15

and similarly we get

012uαub+(1-u)a21-udu+1211-uαub+(1-u)a21-udu=011-uα+1ub+(1-u)a2du-0121-uα-uαub+(1-u)a21-udu011-uα+1ub+(1-u)a2du-0121-2uαub+(1-u)a21-udu=011-uα+1ub+(1-u)a2du-0121-2uαub+(1-u)a2du+012u1-2uαub+(1-u)a2du=01uα+1ua+(1-u)b2du-12011-uαu2b+(1-u2)a2du+1401u1-uαu2b+(1-u2)a2du=01uα+1ua+(1-u)b2du-1201vαa+b2-21-vb-ab+a-2dv+14011-vvαa+b2-21-vb-ab+a-2dv=b-2α+22F12,α+2;α+3;1-ab-2a+b-2α+12F12,α+1;α+2;b-ab+a+a+b-2α+1α+22F12,α+1;α+3;b-ab+a=C2α. 16

If we use (15) and (16) in (14) , we have (11). This completes the proof.

Corollary 1

In Theorem 6:

(1) If we takeα=1we have the following Hermite–Hadamard–Fejer inequality for harmonically convex functions which is related to the left-hand side of (5):

f2aba+babgxx2dx-abfxgxx2dxgb-a2C11fa+C21fb,

(2) If we takegx=1we have following Hermite–Hadamard type inequality for harmonically convex functions in fractional integral forms which is related to the left-hand side of (6):

f2aba+b-Γα+121-αabb-aαJa+b2ab+αfh1/a+Ja+b2ab-αfh1/babb-a21-αC1αfa+C2αfb,

(3) If we takeα=1andgx=1we have the following Hermite–Hadamard type inequality for harmonically convex functions which is related to the left-hand side of (4):

f2aba+b-abb-aabfxx2dxabb-aC11fa+C21fb.

Theorem 7

Letf:I0,Rbe a differentiable function onI, the interior ofI, such thatfLa,b, wherea,bI. Iffq,q1,is harmonicallyconvex ona,b, g:a,bRis continuous and harmonically symmetric with respect to2aba+b, then the following inequality for fractional integrals holds:

f(a)+f(b)2J1/b+αgh(1/a)+J1/a-αgh(1/b)-J1/b+αfgh(1/a)+J1/a-αfgh(1/b)gabb-aΓ(α+1)b-aabα×C31-1qαC4αf(a)q+C5αf(b)q1q+C61-1qαC7αf(a)q+C8αf(b)q1q 17

where

C3α=a+b-22α-1α+12F12,1;α+2;b-ab+a,C4α=a+b-22αα+22F12,1;α+3;b-ab+a,C5α=C3α-C4α,C6α=b-22α+1α+12F12,α+1;α+2;121-ab,C7α=b-22α+1α+12F12,α+1;α+2;121-ab-b-22α+2α+22F12,α+2;α+3;121-ab,C8α=C6α-C7α,

withα>1andh(x)=1/x, x1b,1a.

Proof

Using (12) , power mean inequality and the harmonically convexity of fq, it follows that

f2aba+bJa+b2ab+αgh(1/a)+Ja+b2ab-αgh(1/b)-Ja+b2ab+αfgh(1/a)+Ja+b2ab-αfgh(1/b)gabb-aΓ(α+1)b-aabα012uαub+1-ua2f(abub+1-ua)du+1211-uαub+1-ua2fabub+1-uadugabb-aΓ(α+1)b-aabα012uαub+1-ua2du1-1q×012uαub+1-ua2fabub+(1-u)aqdu1q+1211-uαub+1-ua2du1-1q×1211-uαub+1-ua2fabub+(1-u)aqdu1qgabb-aΓ(α+1)b-aabα×012uαub+1-ua2du1-1q×012uαub+1-ua2uf(a)q+1-uf(b)qdu1q+1211-uαub+1-ua2du1-1q×1211-uαub+1-ua2uf(a)q+1-uf(b)qdu1q=gabb-aΓ(α+1)b-aabα×012uαub+1-ua2du1-1q×012uα+1ub+1-ua2duf(a)q+012uαub+1-ua21-uduf(b)q1q+1211-uαub+1-ua2du1-1q×1211-uαub+1-ua2uduf(a)q+1211-uα+1ub+1-ua2duf(b)q1q. 18

For the appearing integrals, we have

012uαub+1-ua2du=12α+101uαu2b+(1-u2)a2du=12α+1011-vαa+b2-21-vb-ab+a-2du=a+b-22α-1α+12F12,1;α+2;b-ab+a=C3α, 19
012uα+1ub+1-ua2du=12α+201uα+1u2b+(1-u2)a2du=12α+2011-vα+1a+b2-21-vb-ab+a-2du=a+b-22αα+22F12,1;α+3;b-ab+a=C4α, 20
012uαub+1-ua21-udu=C3α-C4α=C5α, 21
1211-uαub+1-ua2du=012uαua+1-ub2du=12α+101uαu2a+1-u2b2du=12α+101uαb-21-u21-ab-2du=b-22α+1α+12F12,α+1;α+2;121-ab=C6α, 22
1211-uαub+1-ua2udu=012uα1-uua+1-ub2du=012uαua+1-ub2du-012uα+1ua+1-ub2du=12α+101uαu2a+1-u2b2du-12α+201uα+1u2a+1-u2b2du=12α+101uαb-21-u21-ab-2du-12α+201uα+1b-21-u21-ab-2du=b-22α+1α+12F12,α+1;α+2;121-ab-b-22α+2α+22F12,α+2;α+3;121-ab=C7α, 23
1211-uα+1ub+1-ua2du=1211-uαub+1-ua2du-1211-uαub+1-ua2udu=C6α-C7α=C8α. 24

If we use (1924) in (18) , we have (17). This completes the proof.

Corollary 2

In Theorem 7:

(1) If we take α=1 we have the following Hermite–Hadamard–Fejer inequality for harmonically convex functions which is related to the left-hand side of (5):

f2aba+babgxx2dx-abfxgxx2dxgb-a2C31-1q1C41f(a)q+C51f(b)q1q+C61-1q1C71f(a)q+C81f(b)q1q,

(2) If we take gx=1we have the following Hermite–Hadamard type inequality for harmonically convex functions in fractional integral forms which is related to the left-hand side of (6):

f2aba+b-Γα+121-αabb-aαJa+b2ab+αfh1/a+Ja+b2ab-αfh1/babb-a21-αC31-1qαC4αf(a)q+C5αf(b)q1q+C61-1qαC7αf(a)q+C8αf(b)q1q,

(3) If we takeα=1and gx=1we have the following Hermite–Hadamard type inequality for harmonically convex functions which is related to the left-hand side of (4):

f2aba+b-abb-aabfxx2dxabb-aC31-1q1C41f(a)q+C51f(b)q1q+C61-1q1C71f(a)q+C81f(b)q1q.

We can state another inequality for q>1 as follows:

Theorem 8

Letf:I0,Rbe a differentiable function onI, the interior ofI, such thatfLa,b, wherea,bI. Iffq,q>1,is harmonically convex on a,b, g:a,bRis continuous and harmonically symmetric with respect to2aba+b, then the following inequality for fractional integrals holds:

f(a)+f(b)2J1/b+αgh(1/a)+J1/a-αgh(1/b)-J1/b+αfgh(1/a)+J1/a-αfgh(1/b)gabb-aΓ(α+1)b-aabα×C91pαf(a)q+3f(b)q81q+C101pα3f(a)q+f(b)q81q 25

where

C9α=a+b-2p2αp-2p+1αp+12F12p,1;αp+2;b-ab+a,C10α=b-2p2αp+1αp+12F12,αp+1;αp+2;121-ab,

withα>1, h(x)=1/x, x1b,1aand1/p+1/q=1.

Proof

Using (12), Hölder’s inequality and the harmonically convexity of fq, it follows that

f2aba+bJa+b2ab+αgh(1/a)+Ja+b2ab-αgh(1/b)-Ja+b2ab+αfgh(1/a)+Ja+b2ab-αfgh(1/b)gabb-aΓ(α+1)b-aabα012uαub+1-ua2f(abub+1-ua)du+1211-uαub+1-ua2f(abub+1-ua)dugabb-aΓ(α+1)b-aabα012uαpub+1-ua2pdu1p×012f(abub+(1-u)a)qdu1q+1211-uαpub+1-ua2pdu1p×121f(abub+(1-u)a)qdu1qgabb-aΓ(α+1)b-aabα012uαpub+1-ua2pdu1p×012uf(a)q+1-uf(b)qdu1q+1211-uαpub+1-ua2pdu1p×121uf(a)q+1-uf(b)qdu1q=gabb-aΓ(α+1)b-aabα×012uαpub+1-ua2pdu1pf(a)q+3f(b)q81q+1211-uαpub+1-ua2pdu1p3f(a)q+f(b)q81q. 26

For the appearing integrals, we have

012uαpub+1-ua2pdu=12αp+101uαpu2b+(1-u2)a2pdu=12αp+1011-vαpa+b2-2p1-vb-ab+a-2pdv=a+b-2p2αp-2p+1αp+12F12p,1;αp+2;b-ab+a=C9α. 27

Similarly, we have

1211-uαpub+1-ua2pdu=012uαpua+1-ub2pdu=12αp+101uαpu2a+1-u2b2pdu=12αp+101uαb-2p1-u21-ab-2pdu=b-2p2αp+1αp+12F12,αp+1;αp+2;121-ab=C10α. 28

If we use (27) and (28) in (26), we have (25). This completes the proof.

Corollary 3

In Theorem 8:

(1) If we takeα=1we have the following Hermite–Hadamard–Fejer inequality for harmonically convex functions which is related to the left-hand side of (5):

f2aba+babgxx2dx-abfxgxx2dxgb-a2C91p1f(a)q+3f(b)q81q+C101p13f(a)q+f(b)q81q,

(2) If we takegx=1we have following Hermite–Hadamard type inequality for harmonically convex functions in fractional integral forms which is related to the left-hand side of (6):

f2aba+b-Γα+121-αabb-aαJa+b2ab+αfh1/a+Ja+b2ab-αfh1/babb-a21-αC91pαf(a)q+3f(b)q81q+C101pα3f(a)q+f(b)q81q,

(3) If we takeα=1andgx=1we have the following Hermite–Hadamard type inequality for harmonically convex functions which is related to the left-hand side of (4):

f2aba+b-abb-aabfxx2dxabb-aC91p1f(a)q+3f(b)q81q+C101p13f(a)q+f(b)q81q.

Conclusion

In this paper, new Hermite–Hadamard type inequalities for harmonically convex functions in fractional integral forms are given and Hermite–Hadamard–Fejer inequalities for harmonically convex functions in fractional integral forms are built. Also, an integral identity and some Hermite–Hadamard–Fejer type integral inequalities for harmonically convex functions in fractional integral forms are obtained.

Authors' contributions

MK, İİ, NY, UG contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Acknowledgements

The authors are very grateful to the referees for helpful comments and valuable suggestions. Also, Kunt and İşcan are very grateful to their PhD supervisor Prof. Dr. Abdullah Çavuş.

Competing interests

The authors declare that they have no competing interests.

Contributor Information

Mehmet Kunt, Email: mkunt@ktu.edu.tr.

İmdat İşcan, Email: imdat.iscan@giresun.edu.tr.

Nazlı Yazıcı, Email: nazliyazici@ktu.edu.tr.

Uğur Gözütok, Email: ugurgozutok@ktu.edu.tr.

References

  1. Bombardelli M, Varošanec S. Properties of h-convex functions related to the Hermite–Hadamard–Fejér inequalities. Comput Math Appl. 1869;58(2009):1877. [Google Scholar]
  2. Chen F, Wu S (2014) Fejer and Hermite–Hadamard type inqequalities for harmonically convex functions. J Appl Math 2014, article id: 386806
  3. Dahmani Z. On Minkowski and Hermite–Hadamard integral inequalities via fractional integration. Ann Funct Anal. 2010;1(1):51–58. doi: 10.15352/afa/1399900993. [DOI] [Google Scholar]
  4. Fejér L. Uber die Fourierreihen, II, Math. Naturwise. AnzUngar. Akad., Wiss, 1906;24:369–390. [Google Scholar]
  5. Hadamard J. Étude sur les propriétés des fonctions entières et en particulier d’une fonction considérée par Riemann. J Math Pures Appl. 1893;58:171–215. [Google Scholar]
  6. Hermite Ch. Sur deux limites d’une intégrale définie. Mathesis. 1883;3:82–83. [Google Scholar]
  7. İşcan İ. New estimates on generalization of some integral inequalities for s-convex functions and their applications. Int J Pure Appl Math. 2013;86(4):727–746. [Google Scholar]
  8. İşcan İ. Generalization of different type integral inequalities for s-convex functions via fractional integrals. Applicable Analysis. 2013 [Google Scholar]
  9. İşcan İ. On generalization of different type integral inequalities for s-convex functions via fractional integrals. Math Sci Appl E-Notes. 2014;2(1):55–67. [Google Scholar]
  10. İşcan İ. Hermite–Hadamard type inequalities for harmonically convex functions. Hacet J Math Stat. 2014;43(6):935–942. [Google Scholar]
  11. İşcan İ. Some new general integral inequalities for h-convex and h-concave functions. Adv Pure Appl Math. 2014;5(1):21–29. [Google Scholar]
  12. İşcan İ, Wu S. Hermite–Hadamard type inequalities for harmonically convex functions via fractional integrals. Appl Math Comput. 2014;238:237–244. [Google Scholar]
  13. Kilbas AA, Srivastava HM, Trujillo JJ. Theory and applications of fractional differential equations. Amsterdam: Elsevier; 2006. [Google Scholar]
  14. Latif MA, Dragomir SS, Momoniat E (2015) Some Fejer type inequalities for harmonically-convex functions with applications to special means. http://rgmia.org/papers/v18/v18a24
  15. Mihai MV, Ion DA. Generalization of some inequalities via Riemann–Liouville fractional calculus. Tamkang J Math. 2014;45(2):207–215. doi: 10.5556/j.tkjm.45.2014.1545. [DOI] [Google Scholar]
  16. Minculete N, Mitroi F-C. Fejér type inequalities. Aust J Math Anal Appl. 2012;9(1):1–8. [Google Scholar]
  17. Prudnikov AP, Brychkov YA, Marichev OJ. Integral and series, elementary Functions. Moscow: Nauka; 1981. [Google Scholar]
  18. Sarıkaya MZ. On new Hermite Hadamard Fejér type integral inequalities. Stud Univ Babeş-Bolyai Math. 2012;57(3):377–386. [Google Scholar]
  19. Sarıkaya MZ, Set E, Yaldız H, Başak N. Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math Comput Model. 2013;57(9):2403–2407. doi: 10.1016/j.mcm.2011.12.048. [DOI] [Google Scholar]
  20. Tseng K-L, Yang G-S, Hsu K-C. Some inequalities for differentiable mappings and applications to Fejér inequality and weighted trapezoidal formula. Taiwan J Math. 2011;15(4):1737–1747. [Google Scholar]
  21. Wang J, Li X, Fečkan M, Zhou Y. Hermite-Hadamard-type inequalities for Riemann–Liouville fractional integrals via two kinds of convexity. Appl Anal. 2012;92(11):2241–2253. doi: 10.1080/00036811.2012.727986. [DOI] [Google Scholar]
  22. Wang J, Zhu C. New generalized Hermite–Hadamard type inequalities and applications to special means. J Inequal Appl. 2013;2013(325):1–15. [Google Scholar]

Articles from SpringerPlus are provided here courtesy of Springer-Verlag

RESOURCES