Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 Apr 1;89(7):2595–2599. doi: 10.1073/pnas.89.7.2595

First-order analysis of optical flow in monkey brain.

G A Orban 1, L Lagae 1, A Verri 1, S Raiguel 1, D Xiao 1, H Maes 1, V Torre 1
PMCID: PMC48708  PMID: 1557363

Abstract

Optical flow is a rich source of information about the three-dimensional motion and structure of the visual environment. Little is known of how the brain derives this information. One possibility is that it analyzes first-order elementary components of optical flow, such as expansion, rotation, and shear. Using a combination of physiological recordings and modeling techniques, we investigated the contribution of the middle superior temporal area (MST), a third-order cortical area in the dorsal visual pathway that receives inputs from the medial temporal area (MT). The results show (i) that MST cells, but not MT cells, are selective for elementary flow components (EFCs) alone or their combination with translation, (ii) that MST cells selective for an EFC do not extract this component from a more complex motion pattern, and (iii) that position invariance as observed in MST is compatible with an input arrangement from MT cells matching the selectivity of MST neurons.

Full text

PDF
2595

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Duffy C. J., Wurtz R. H. Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli. J Neurophysiol. 1991 Jun;65(6):1329–1345. doi: 10.1152/jn.1991.65.6.1329. [DOI] [PubMed] [Google Scholar]
  2. Duffy C. J., Wurtz R. H. Sensitivity of MST neurons to optic flow stimuli. II. Mechanisms of response selectivity revealed by small-field stimuli. J Neurophysiol. 1991 Jun;65(6):1346–1359. doi: 10.1152/jn.1991.65.6.1346. [DOI] [PubMed] [Google Scholar]
  3. Lagae L., Gulyas B., Raiguel S., Orban G. A. Laminar analysis of motion information processing in macaque V5. Brain Res. 1989 Sep 4;496(1-2):361–367. doi: 10.1016/0006-8993(89)91089-5. [DOI] [PubMed] [Google Scholar]
  4. Maunsell J. H., Nealey T. A., DePriest D. D. Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey. J Neurosci. 1990 Oct;10(10):3323–3334. doi: 10.1523/JNEUROSCI.10-10-03323.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Maunsell J. H., Van Essen D. C. Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. J Neurophysiol. 1983 May;49(5):1127–1147. doi: 10.1152/jn.1983.49.5.1127. [DOI] [PubMed] [Google Scholar]
  6. Newsome W. T., Paré E. B. A selective impairment of motion perception following lesions of the middle temporal visual area (MT). J Neurosci. 1988 Jun;8(6):2201–2211. doi: 10.1523/JNEUROSCI.08-06-02201.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Rogers B., Koenderink J. Monocular aniseikonia: a motion parallax analogue of the disparity-induced effect. Nature. 1986 Jul 3;322(6074):62–63. doi: 10.1038/322062a0. [DOI] [PubMed] [Google Scholar]
  8. Saito H., Yukie M., Tanaka K., Hikosaka K., Fukada Y., Iwai E. Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey. J Neurosci. 1986 Jan;6(1):145–157. doi: 10.1523/JNEUROSCI.06-01-00145.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Tanaka K., Fukada Y., Saito H. A. Underlying mechanisms of the response specificity of expansion/contraction and rotation cells in the dorsal part of the medial superior temporal area of the macaque monkey. J Neurophysiol. 1989 Sep;62(3):642–656. doi: 10.1152/jn.1989.62.3.642. [DOI] [PubMed] [Google Scholar]
  10. Tanaka K., Saito H. Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey. J Neurophysiol. 1989 Sep;62(3):626–641. doi: 10.1152/jn.1989.62.3.626. [DOI] [PubMed] [Google Scholar]
  11. Ungerleider L. G., Desimone R. Cortical connections of visual area MT in the macaque. J Comp Neurol. 1986 Jun 8;248(2):190–222. doi: 10.1002/cne.902480204. [DOI] [PubMed] [Google Scholar]
  12. Warren W. H., Jr, Morris M. W., Kalish M. Perception of translational heading from optical flow. J Exp Psychol Hum Percept Perform. 1988 Nov;14(4):646–660. doi: 10.1037//0096-1523.14.4.646. [DOI] [PubMed] [Google Scholar]
  13. Wurtz R. H., Yamasaki D. S., Duffy C. J., Roy J. P. Functional specialization for visual motion processing in primate cerebral cortex. Cold Spring Harb Symp Quant Biol. 1990;55:717–727. doi: 10.1101/sqb.1990.055.01.067. [DOI] [PubMed] [Google Scholar]
  14. Zeki S. M. Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey. J Physiol. 1974 Feb;236(3):549–573. doi: 10.1113/jphysiol.1974.sp010452. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES