Abstract
The following endocrine function parameters were studied serially in a group of 10 patients with recent myocardial infarction: blood and urinary levels of epinephrine and norepinephrine, urinary excretion of vanillyl-mandelic acid; protein-bound iodine, Hamolsky test (Hamolsky, Stein, and Freedberg, 1957); blood insulin; 24-hour urinary excretion of 17-hydroxycorticoids, sodium, and potassium.
The acute phase of myocardial infarction, especially in those patients with a severe clinical course (rhythm disturbances, coronary insufficiency, circulatory failure), was associated with disturbed endocrine reactivity.
The most frequent and the earliest feature was the increased level of the 24-hour urinary excretion of epinephrine, combined with a pronounced decrease in blood insulin level.
Later in the course of the disease, as the adrenergic reactivity returned to normal, there was an increase in blood insulin to normal levels.
In 3 patients with severe clinical symptoms of acute myocardial infarction, there were, in addition to the increased 24-hour urinary excretion of catecholamines, a decreased blood insulin, higher than normal levels of protein-bound iodine, and of the Hamolsky test. One of these patients developed hypoadrenia.
It is possible that the abnormal endocrine reactions accelerate the catabolic processes within cardiac tissue (catecholamines, thyroid hormones), especially when there is a possible functional deficiency of hormones, occurring as a general adaptation reaction to stress (cortisol, insulin). The disturbances that follow may be dangerous for the patient.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altszuler N., Steele R., Rathgeb I., De Bodo R. C. Glucose metabolism and plasma insulin level during epinephrine infusion in the dog. Am J Physiol. 1967 Mar;212(3):677–682. doi: 10.1152/ajplegacy.1967.212.3.677. [DOI] [PubMed] [Google Scholar]
- BARKER S. B., KLITGAARD H. M. Metabolism of tissues excised from thyroxine-injected rats. Am J Physiol. 1952 Jul;170(1):81–86. doi: 10.1152/ajplegacy.1952.170.1.81. [DOI] [PubMed] [Google Scholar]
- BERTLER A., CARLSSON A., ROSENGREN E. A method for the fluorimetric determination of adrenaline and noradrenaline in tissues. Acta Physiol Scand. 1958 Dec 15;44(3-4):273–292. doi: 10.1111/j.1748-1716.1958.tb01627.x. [DOI] [PubMed] [Google Scholar]
- Ceremuzyński L., Staszewska-Barczak J., Herbaczynska-Cedro K. Cardiac rhythm disturbances and the release of catecholamines after acute coronary occlusion in dogs. Cardiovasc Res. 1969 Apr;3(2):190–197. doi: 10.1093/cvr/3.2.190. [DOI] [PubMed] [Google Scholar]
- DAVIS V. E. Effect of cortisone and thyroxine on aromatic amino acid decarboxylation. Endocrinology. 1963 Jan;72:33–38. doi: 10.1210/endo-72-1-33. [DOI] [PubMed] [Google Scholar]
- FREEDBERG A. S., HAMOLSKY M. W., STEIN M. The thyroid hormone-plasma protein complex in man. II. A new in vitro method for study of uptake of labelled hormonal components by human erythrocytes. J Clin Endocrinol Metab. 1957 Jan;17(1):33–43. doi: 10.1210/jcem-17-1-33. [DOI] [PubMed] [Google Scholar]
- GAZES P. C., RICHARDSON J. A., WOODS E. F. Plasma catechol amine concentrations in myocardial infarction and angina pectoris. Circulation. 1959 May;19(5):657–661. doi: 10.1161/01.cir.19.5.657. [DOI] [PubMed] [Google Scholar]
- HENNES A. R. Abnormalities of acetate metabolism in adrenal insufficiency in man. Am J Med. 1962 Mar;32:343–351. doi: 10.1016/0002-9343(62)90125-0. [DOI] [PubMed] [Google Scholar]
- Januszewicz W., Sznajderman M., Wocial B., Preibisz J. Urinary excretion of free norepinephrine and free epinephrine in patients with acute myocardial infarction in relation to its clinical course. Am Heart J. 1968 Sep;76(3):345–352. doi: 10.1016/0002-8703(68)90229-9. [DOI] [PubMed] [Google Scholar]
- KLEIN A. J., PALMER L. A. Plasma cortisol in myocardial infarction. A correlation with shock and survival. Am J Cardiol. 1963 Mar;11:332–337. doi: 10.1016/0002-9149(63)90126-7. [DOI] [PubMed] [Google Scholar]
- Lefer A. M., Verrier R. L., Carson W. W. Cardiac performance in experimental adrenal insufficiency in cats. Circ Res. 1968 Jun;22(6):817–827. doi: 10.1161/01.res.22.6.817. [DOI] [PubMed] [Google Scholar]
- Logan R. W., Murdoch W. R. Blood-levels of hydrocortisone, transaminases, and cholesterol after myocardial infarction. Lancet. 1966 Sep 3;2(7462):521–524. doi: 10.1016/s0140-6736(66)92880-7. [DOI] [PubMed] [Google Scholar]
- Porte D., Jr, Graber A. L., Kuzuya T., Williams R. H. The effect of epinephrine on immunoreactive insulin levels in man. J Clin Invest. 1966 Feb;45(2):228–236. doi: 10.1172/JCI105335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RAAB W. THE NONVASCULAR METABOLIC MYOCARDIAL VULNERABILITY FACTOR IN "CORONARY HEART DISEASE". FUNDAMENTALS OF PATHOGENESIS, TREATMENT, AND PREVENTION. Am Heart J. 1963 Nov;66:685–706. doi: 10.1016/0002-8703(63)90327-2. [DOI] [PubMed] [Google Scholar]
- SILBER R. H., PORTER C. C. The determination of 17,21-dihydroxy-20-ketosteroids in urine and plasma. J Biol Chem. 1954 Oct;210(2):923–932. [PubMed] [Google Scholar]
- Staszewska-Barczak J., Ceremuzynski L. The continuous estimation of catecholamine release in the early stages of myocardial infarction in the dog. Clin Sci. 1968 Jun;34(3):531–539. [PubMed] [Google Scholar]
- Tatoń J., Ceremuzyński L., Wiśniewska A. Zaburzenia przemiany weglowodanowej w ostrym okresie zawału serca. I. Ocena insulinopodobnej aktywności surowicy (ILA) i tkankowego zuzycia glukozy. Pol Arch Med Wewn. 1969 Dec;43(6):1579–1584. [PubMed] [Google Scholar]
- Valori C., Thomas M., Shillingford J. Free noradrenaline and adrenaline excretion in relation to clinical syndromes following myocardial infarction. Am J Cardiol. 1967 Nov;20(5):605–617. doi: 10.1016/0002-9149(67)90001-x. [DOI] [PubMed] [Google Scholar]
- WOIWOD A. J., KNIGHT R. The determination of 3-methoxy 4-hydroxy mandelic acid in urine. J Clin Pathol. 1961 Sep;14:502–504. doi: 10.1136/jcp.14.5.502. [DOI] [PMC free article] [PubMed] [Google Scholar]
