Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 Apr 1;89(7):2779–2783. doi: 10.1073/pnas.89.7.2779

Partial characterization of vertebrate prothrombin cDNAs: amplification and sequence analysis of the B chain of thrombin from nine different species.

D K Banfield 1, R T MacGillivray 1
PMCID: PMC48746  PMID: 1557383

Abstract

The cDNA sequence of the B chain of thrombin (EC 3.4.21.5) has been determined from nine vertebrate species (rat, mouse, rabbit, chicken, gecko, newt, rainbow trout, sturgeon, and hagfish). The amino acid sequence identities vary from 96.5% (rat vs. mouse) to 62.6% (newt vs. hagfish). Of the 240 amino acids spanned in all the species compared, there is identity at 110 (45.8%) positions. When conservative changes are included, the amino acid similarity increases to 75%. The most conserved portions of the B chain are the active-site residues and adjacent amino acids, the B loop, and the primary substrate-binding region. In addition, the Arg-Gly-Asp motif is conserved in 9 of the 11 species compared, and the chemotactic/growth factor domain is well conserved in all of the 11 species compared. The least conserved regions of the B chain correspond to surface loops, including the putative thrombomodulin-binding sites and one of the hirudin-binding regions. The extent of the amino acid sequence similarity and the conservation of many of the functional/structural motifs suggests that, in addition to their role in blood coagulation, vertebrate thrombins may also play an important role in the general mechanisms of wound repair.

Full text

PDF
2779

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bar-Shavit R., Kahn A. J., Mann K. G., Wilner G. D. Identification of a thrombin sequence with growth factor activity on macrophages. Proc Natl Acad Sci U S A. 1986 Feb;83(4):976–980. doi: 10.1073/pnas.83.4.976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bar-Shavit R., Kahn A., Mudd M. S., Wilner G. D., Mann K. G., Fenton J. W., 2nd Localization of a chemotactic domain in human thrombin. Biochemistry. 1984 Jan 31;23(3):397–400. doi: 10.1021/bi00298a001. [DOI] [PubMed] [Google Scholar]
  3. Bar-Shavit R., Kahn A., Wilner G. D., Fenton J. W., 2nd Monocyte chemotaxis: stimulation by specific exosite region in thrombin. Science. 1983 May 13;220(4598):728–731. doi: 10.1126/science.6836310. [DOI] [PubMed] [Google Scholar]
  4. Bar-Shavit R., Sabbah V., Lampugnani M. G., Marchisio P. C., Fenton J. W., 2nd, Vlodavsky I., Dejana E. An Arg-Gly-Asp sequence within thrombin promotes endothelial cell adhesion. J Cell Biol. 1991 Jan;112(2):335–344. doi: 10.1083/jcb.112.2.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bizios R., Lai L., Fenton J. W., 2nd, Malik A. B. Thrombin-induced chemotaxis and aggregation of neutrophils. J Cell Physiol. 1986 Sep;128(3):485–490. doi: 10.1002/jcp.1041280318. [DOI] [PubMed] [Google Scholar]
  6. Bode W., Mayr I., Baumann U., Huber R., Stone S. R., Hofsteenge J. The refined 1.9 A crystal structure of human alpha-thrombin: interaction with D-Phe-Pro-Arg chloromethylketone and significance of the Tyr-Pro-Pro-Trp insertion segment. EMBO J. 1989 Nov;8(11):3467–3475. doi: 10.1002/j.1460-2075.1989.tb08511.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cabot E. L., Beckenbach A. T. Simultaneous editing of multiple nucleic acid and protein sequences with ESEE. Comput Appl Biosci. 1989 Jul;5(3):233–234. doi: 10.1093/bioinformatics/5.3.233. [DOI] [PubMed] [Google Scholar]
  8. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  9. DOOLITTLE R. F. DIFFERENCES IN THE CLOTTING OF LAMPREY FIBRINOGEN BY LAMPREY AND BOVINE THROMBINS. Biochem J. 1965 Mar;94:735–741. doi: 10.1042/bj0940735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Degen S. J., MacGillivray R. T., Davie E. W. Characterization of the complementary deoxyribonucleic acid and gene coding for human prothrombin. Biochemistry. 1983 Apr 26;22(9):2087–2097. doi: 10.1021/bi00278a008. [DOI] [PubMed] [Google Scholar]
  11. Degen S. J., Schaefer L. A., Jamison C. S., Grant S. G., Fitzgibbon J. J., Pai J. A., Chapman V. M., Elliott R. W. Characterization of the cDNA coding for mouse prothrombin and localization of the gene on mouse chromosome 2. DNA Cell Biol. 1990 Sep;9(7):487–498. doi: 10.1089/dna.1990.9.487. [DOI] [PubMed] [Google Scholar]
  12. Dihanich M., Monard D. cDNA sequence of rat prothrombin. Nucleic Acids Res. 1990 Jul 25;18(14):4251–4251. doi: 10.1093/nar/18.14.4251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fenton J. W., 2nd, Bing D. H. Thrombin active-site regions. Semin Thromb Hemost. 1986 Jul;12(3):200–208. doi: 10.1055/s-2007-1003551. [DOI] [PubMed] [Google Scholar]
  14. Fenton J. W., 2nd Regulation of thrombin generation and functions. Semin Thromb Hemost. 1988 Jul;14(3):234–240. doi: 10.1055/s-2007-1002783. [DOI] [PubMed] [Google Scholar]
  15. Fenton J. W., 2nd Thrombin specificity. Ann N Y Acad Sci. 1981;370:468–495. doi: 10.1111/j.1749-6632.1981.tb29757.x. [DOI] [PubMed] [Google Scholar]
  16. Frohman M. A., Dush M. K., Martin G. R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8998–9002. doi: 10.1073/pnas.85.23.8998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Furie B., Bing D. H., Feldmann R. J., Robison D. J., Burnier J. P., Furie B. C. Computer-generated models of blood coagulation factor Xa, factor IXa, and thrombin based upon structural homology with other serine proteases. J Biol Chem. 1982 Apr 10;257(7):3875–3882. [PubMed] [Google Scholar]
  18. Grütter M. G., Priestle J. P., Rahuel J., Grossenbacher H., Bode W., Hofsteenge J., Stone S. R. Crystal structure of the thrombin-hirudin complex: a novel mode of serine protease inhibition. EMBO J. 1990 Aug;9(8):2361–2365. doi: 10.1002/j.1460-2075.1990.tb07410.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gyllensten U. B., Erlich H. A. Generation of single-stranded DNA by the polymerase chain reaction and its application to direct sequencing of the HLA-DQA locus. Proc Natl Acad Sci U S A. 1988 Oct;85(20):7652–7656. doi: 10.1073/pnas.85.20.7652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Henriksen R. A., Mann K. G. Identification of the primary structural defect in the dysthrombin thrombin Quick I: substitution of cysteine for arginine-382. Biochemistry. 1988 Dec 27;27(26):9160–9165. doi: 10.1021/bi00426a013. [DOI] [PubMed] [Google Scholar]
  21. Henriksen R. A., Mann K. G. Substitution of valine for glycine-558 in the congenital dysthrombin thrombin Quick II alters primary substrate specificity. Biochemistry. 1989 Mar 7;28(5):2078–2082. doi: 10.1021/bi00431a017. [DOI] [PubMed] [Google Scholar]
  22. Hofsteenge J., Braun P. J., Stone S. R. Enzymatic properties of proteolytic derivatives of human alpha-thrombin. Biochemistry. 1988 Mar 22;27(6):2144–2151. doi: 10.1021/bi00406a049. [DOI] [PubMed] [Google Scholar]
  23. Jackman R. W., Beeler D. L., Fritze L., Soff G., Rosenberg R. D. Human thrombomodulin gene is intron depleted: nucleic acid sequences of the cDNA and gene predict protein structure and suggest sites of regulatory control. Proc Natl Acad Sci U S A. 1987 Sep;84(18):6425–6429. doi: 10.1073/pnas.84.18.6425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Jackman R. W., Beeler D. L., VanDeWater L., Rosenberg R. D. Characterization of a thrombomodulin cDNA reveals structural similarity to the low density lipoprotein receptor. Proc Natl Acad Sci U S A. 1986 Dec;83(23):8834–8838. doi: 10.1073/pnas.83.23.8834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Jackson C. M., Nemerson Y. Blood coagulation. Annu Rev Biochem. 1980;49:765–811. doi: 10.1146/annurev.bi.49.070180.004001. [DOI] [PubMed] [Google Scholar]
  26. Levin E. G., Stern D. M., Nawroth P. P., Marlar R. A., Fair D. S., Fenton J. W., 2nd, Harker L. A. Specificity of the thrombin-induced release of tissue plasminogen activator from cultured human endothelial cells. Thromb Haemost. 1986 Oct 21;56(2):115–119. [PubMed] [Google Scholar]
  27. MacGillivray R. T., Davie E. W. Characterization of bovine prothrombin mRNA and its translation product. Biochemistry. 1984 Apr 10;23(8):1626–1634. doi: 10.1021/bi00303a007. [DOI] [PubMed] [Google Scholar]
  28. Miyata T., Morita T., Inomoto T., Kawauchi S., Shirakami A., Iwanaga S. Prothrombin Tokushima, a replacement of arginine-418 by tryptophan that impairs the fibrinogen clotting activity of derived thrombin Tokushima. Biochemistry. 1987 Feb 24;26(4):1117–1122. doi: 10.1021/bi00378a020. [DOI] [PubMed] [Google Scholar]
  29. Morin A., Arvier M. M., Doutremepuich F., Vigneron C. Localization of the structural domain responsible for the chemotactic properties of thrombin on polymorphonuclear leukocytes. Thromb Res. 1990 Oct 1;60(1):33–42. doi: 10.1016/0049-3848(90)90337-c. [DOI] [PubMed] [Google Scholar]
  30. Noé G., Hofsteenge J., Rovelli G., Stone S. R. The use of sequence-specific antibodies to identify a secondary binding site in thrombin. J Biol Chem. 1988 Aug 25;263(24):11729–11735. [PubMed] [Google Scholar]
  31. Ratnoff O. D. The evolution of hemostatic mechanisms. Perspect Biol Med. 1987 Autumn;31(1):4–33. doi: 10.1353/pbm.1987.0003. [DOI] [PubMed] [Google Scholar]
  32. Rydel T. J., Ravichandran K. G., Tulinsky A., Bode W., Huber R., Roitsch C., Fenton J. W., 2nd The structure of a complex of recombinant hirudin and human alpha-thrombin. Science. 1990 Jul 20;249(4966):277–280. doi: 10.1126/science.2374926. [DOI] [PubMed] [Google Scholar]
  33. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  34. Saiki R. K., Scharf S., Faloona F., Mullis K. B., Horn G. T., Erlich H. A., Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985 Dec 20;230(4732):1350–1354. doi: 10.1126/science.2999980. [DOI] [PubMed] [Google Scholar]
  35. Sakanari J. A., Staunton C. E., Eakin A. E., Craik C. S., McKerrow J. H. Serine proteases from nematode and protozoan parasites: isolation of sequence homologs using generic molecular probes. Proc Natl Acad Sci U S A. 1989 Jul;86(13):4863–4867. doi: 10.1073/pnas.86.13.4863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Suzuki K., Nishioka J., Hayashi T. Localization of thrombomodulin-binding site within human thrombin. J Biol Chem. 1990 Aug 5;265(22):13263–13267. [PubMed] [Google Scholar]
  37. Tsiang M., Lentz S. R., Dittman W. A., Wen D., Scarpati E. M., Sadler J. E. Equilibrium binding of thrombin to recombinant human thrombomodulin: effect of hirudin, fibrinogen, factor Va, and peptide analogues. Biochemistry. 1990 Nov 27;29(47):10602–10612. doi: 10.1021/bi00499a005. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES