Skip to main content
Protein & Cell logoLink to Protein & Cell
. 2010 May 5;1(4):406–416. doi: 10.1007/s13238-010-0049-3

Crystal structures of NAC domains of human nascent polypeptide-associated complex (NAC) and its αNAC subunit

Lanfeng Wang 1, Wenchi Zhang 1, Lu Wang 1, Xuejun C Zhang 1, Xuemei Li 1, Zihe Rao 1,2,3,
PMCID: PMC4875098  PMID: 21203952

Abstract

Nascent polypeptide associated complex (NAC) and its two isolated subunits, αNAC and βNAC, play important roles in nascent peptide targeting. We determined a 1.9 Å resolution crystal structure of the interaction core of NAC heterodimer and a 2.4 Å resolution crystal structure of αNAC NAC domain homodimer. These structures provide detailed information of NAC heterodimerization and αNAC homodimerization. We found that the NAC domains of αNAC and βNAC share very similar folding despite of their relative low identity of amino acid sequences. Furthermore, different electric charge distributions of the two subunits at the NAC interface provide an explanation to the observation that the heterodimer of NAC complex is more stable than the single subunit homodimer. In addition, we successfully built a βNAC NAC domain homodimer model based on homologous modeling, suggesting that NAC domain dimerization is a general property of the NAC family. These 3D structures allow further studies on structure-function relationship of NAC.

Electronic Supplementary Material

Supplementary material is available for this article at 10.1007/s13238-010-0049-3 and is accessible for authorized users.

Keywords: nascent polypeptide-associated complex, αNAC homodimer, βNAC, crystal structure

Electronic supplementary material

13238_2010_49_MOESM1_ESM.pdf (393.6KB, pdf)

Supplementary material, approximately 393 KB.

Footnotes

Electronic Supplementary Material

Supplementary material is available for this article at 10.1007/s13238-010-0049-3 and is accessible for authorized users.

References

  1. Adams P.D., Afonine P.V., Bunkoczi G., Chen V.B., Davis I.W., Echols N., Headd J.J., Hung L.W., Kapral G.J., Grosse-Kunstleve R.W., et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr. 2010;66:213–221. doi: 10.1107/S0907444909052925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Al-Shanti N., Aldahoodi Z. Inhibition of alpha nascent polypeptide associated complex protein may induce proliferation, differentiation and enhance the cytotoxic activity of human CD8 + T cells. J Clin Immunol. 2006;26:457–464. doi: 10.1007/s10875-006-9041-3. [DOI] [PubMed] [Google Scholar]
  3. Al-Shanti N., Steward C.G., Garland R.J., Rowbottom A.W. Investigation of alpha nascent polypeptide-associated complex functions in a human CD8(+) T cell ex vivo expansion model using antisense oligonucleotides. Immunology. 2004;112:397–403. doi: 10.1111/j.1365-2567.2004.01893.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Arnold K., Bordoli L., Kopp J., Schwede T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics. 2006;22:195–201. doi: 10.1093/bioinformatics/bti770. [DOI] [PubMed] [Google Scholar]
  5. Beatrix B., Sakai H., Wiedmann M. The alpha and beta subunit of the nascent polypeptide-associated complex have distinct functions. J Biol Chem. 2000;275:37838–37845. doi: 10.1074/jbc.M006368200. [DOI] [PubMed] [Google Scholar]
  6. Delano, W. (2002). The PyMOL Molecular Graphics System. http://www.pymol.org.
  7. Deng J.M., Behringer R.R. An insertional mutation in the BTF3 transcription factor gene leads to an early post-implantation lethality in mice. Transgenic Res. 1995;4:264–269. doi: 10.1007/BF01969120. [DOI] [PubMed] [Google Scholar]
  8. Emsley P., Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr. 2004;60:2126–2132. doi: 10.1107/S0907444904019158. [DOI] [PubMed] [Google Scholar]
  9. Fünfschilling U., Rospert S. Nascent polypeptide-associated complex stimulates protein import into yeast mitochondria. Mol Biol Cell. 1999;10:3289–3299. doi: 10.1091/mbc.10.10.3289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. George R., Beddoe T., Landl K., Lithgow T. The yeast nascent polypeptide-associated complex initiates protein targeting to mitochondria in vivo. Proc Natl Acad Sci U S A. 1998;95:2296–2301. doi: 10.1073/pnas.95.5.2296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Goatley L.C., Twigg S.R., Miskin J.E., Monaghan P., St-Arnaud R., Smith G.L., Dixon L.K. The African swine fever virus protein j4R binds to the alpha chain of nascent polypeptide-associated complex. J Virol. 2002;76:9991–9999. doi: 10.1128/JVI.76.19.9991-9999.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gouet P., Courcelle E., Stuart D.I., Métoz F. ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics. 1999;15:305–308. doi: 10.1093/bioinformatics/15.4.305. [DOI] [PubMed] [Google Scholar]
  13. Guex N., Peitsch M.C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 1997;18:2714–2723. doi: 10.1002/elps.1150181505. [DOI] [PubMed] [Google Scholar]
  14. Holm L., Sander C. Protein structure comparison by alignment of distance matrices. J Mol Biol. 1993;233:123–138. doi: 10.1006/jmbi.1993.1489. [DOI] [PubMed] [Google Scholar]
  15. Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983;22:2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
  16. Kim S.H., Shim K.S., Lubec G. Human brain nascent polypeptide-associated complex alpha subunit is decreased in patients with Alzheimer’ s disease and Down syndrome. J Investig Med. 2002;50:293–301. doi: 10.2310/6650.2002.33287. [DOI] [PubMed] [Google Scholar]
  17. Kroes R.A., Jastrow A., McLone M.G., Yamamoto H., Colley P., Kersey D.S., Yong V.W., Mkrdichian E., Cerullo L., Leestma J., et al. The identification of novel therapeutic targets for the treatment of malignant brain tumors. Cancer Lett. 2000;156:191–198. doi: 10.1016/S0304-3835(00)00462-6. [DOI] [PubMed] [Google Scholar]
  18. Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., Valentin F., Wallace I.M., Wilm A., Lopez R., et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23:2947–2948. doi: 10.1093/bioinformatics/btm404. [DOI] [PubMed] [Google Scholar]
  19. Laskowski R.A., Chistyakov V.V., Thornton J.M. PDBsum more: new summaries and analyses of the known 3D structures of proteins and nucleic acids. Nucleic Acids Res. 2005;33:D266–D268. doi: 10.1093/nar/gki001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lauring B., Kreibich G., Weidmann M. The intrinsic ability of ribosomes to bind to endoplasmic reticulum membranes is regulated by signal recognition particle and nascent-polypeptide-associated complex. Proc Natl Acad Sci U S A. 1995;92:9435–9439. doi: 10.1073/pnas.92.21.9435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lauring B., Sakai H., Kreibich G., Wiedmann M. Nascent polypeptide-associated complex protein prevents mistargeting of nascent chains to the endoplasmic reticulum. Proc Natl Acad Sci U S A. 1995;92:5411–5415. doi: 10.1073/pnas.92.12.5411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Li D., Wang X.Z., Ding J., Yu J.P. NACA as a potential cellular target of hepatitis B virus preS1 protein. Dig Dis Sci. 2005;50:1156–1160. doi: 10.1007/s10620-005-2724-4. [DOI] [PubMed] [Google Scholar]
  23. Lopez S., Stuhl L., Fichelson S., Dubart-Kupperschmitt A., St Arnaud R., Galindo J.R., Murati A., Berda N., Dubreuil P., Gomez S. NACA is a positive regulator of human erythroid-cell differentiation. J Cell Sci. 2005;118:1595–1605. doi: 10.1242/jcs.02295. [DOI] [PubMed] [Google Scholar]
  24. Markesich D.C., Gajewski K.M., Nazimiec M.E., Beckingham K. Bicaudal encodes the Drosophila beta NAC homolog, a component of the ribosomal translational machinery*. Development. 2000;127:559–572. doi: 10.1242/dev.127.3.559. [DOI] [PubMed] [Google Scholar]
  25. Melo F., Feytmans E. Assessing protein structures with a non-local atomic interaction energy. J Mol Biol. 1998;277:1141–1152. doi: 10.1006/jmbi.1998.1665. [DOI] [PubMed] [Google Scholar]
  26. Mittermann I., Reininger R., Zimmermann M., Gangl K., Reisinger J., Aichberger K.J., Greisenegger E.K., Niederberger V., Seipelt J., Bohle B., et al. The IgE-reactive autoantigen Hom s 2 induces damage of respiratory epithelial cells and keratinocytes via induction of IFN-gamma. J Invest Dermatol. 2008;128:1451–1459. doi: 10.1038/sj.jid.5701195. [DOI] [PubMed] [Google Scholar]
  27. Moller I., Beatrix B., Kreibich G., Sakai H., Lauring B., Wiedmann M. Unregulated exposure of the ribosomal Msite caused by NAC depletion results in delivery of non-secretory polypeptides to the Sec61 complex. FEBS Lett. 1998;441:1–5. doi: 10.1016/S0014-5793(98)01440-9. [DOI] [PubMed] [Google Scholar]
  28. Moller I., Jung M., Beatrix B., Levy R., Kreibich G., Zimmermann R., Wiedmann M., Lauring B. A general mechanism for regulation of access to the translocon: competition for a membrane attachment site on ribosomes. Proc Natl Acad Sci U S A. 1998;95:13425–13430. doi: 10.1073/pnas.95.23.13425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Moreau A., Yotov W.V., Glorieux F.H., St-Arnaud R. Bone-specific expression of the alpha chain of the nascent polypeptide-associated complex, a coactivator potentiating c-Jun-mediated transcription. Mol Cell Biol. 1998;18:1312–1321. doi: 10.1128/MCB.18.3.1312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mossabeb R., Seiberler S., Mittermann I., Reininger R., Spitzauer S., Natter S., Verdino P., Keller W., Kraft D., Valenta R. Characterization of a novel isoform of alpha-nascent polypeptide-associated complex as IgE-defined autoantigen. J Invest Dermatol. 2002;119:820–829. doi: 10.1046/j.1523-1747.2002.00518.x. [DOI] [PubMed] [Google Scholar]
  31. Murshudov G.N., Vagin A.A., Dodson E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr. 1997;53:240–255. doi: 10.1107/S0907444996012255. [DOI] [PubMed] [Google Scholar]
  32. Otwinowski Z., Minor W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 1997;276:307–326. doi: 10.1016/S0076-6879(97)76066-X. [DOI] [PubMed] [Google Scholar]
  33. Panasenko O., Landrieux E., Feuermann M., Finka A., Paquet N., Collart M.A. The yeast Ccr4-Not complex controls ubiquitination of the nascent-associated polypeptide (NAC-EGD) complex. J Biol Chem. 2006;281:31389–31398. doi: 10.1074/jbc.M604986200. [DOI] [PubMed] [Google Scholar]
  34. Panasenko O.O., David F.P., Collart M.A. Ribosome association and stability of the nascent polypeptide-associated complex is dependent upon its own ubiquitination. Genetics. 2009;181:447–460. doi: 10.1534/genetics.108.095422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Potterton E., Briggs P., Turkenburg M., Dodson E. A graphical user interface to the CCP4 program suite. Acta Crystallogr D Biol Crystallogr. 2003;59:1131–1137. doi: 10.1107/S0907444903008126. [DOI] [PubMed] [Google Scholar]
  36. Powers T., Walter P. The nascent polypeptide-associated complex modulates interactions between the signal recognition particle and the ribosome. Curr Biol. 1996;6:331–338. doi: 10.1016/S0960-9822(02)00484-0. [DOI] [PubMed] [Google Scholar]
  37. Reimann B., Bradsher J., Franke J., Hartmann E., Wiedmann M., Prehn S., Wiedmann B. Initial characterization of the nascent polypeptide-associated complex in yeast. Yeast. 1999;15:397–407. doi: 10.1002/(SICI)1097-0061(19990330)15:5<397::AID-YEA384>3.0.CO;2-U. [DOI] [PubMed] [Google Scholar]
  38. Scheuring U.J., Corbeil J., Mosier D.E., Theofilopoulos A.N. Early modification of host cell gene expression induced by HIV-1. AIDS. 1998;12:563–570. doi: 10.1097/00002030-199806000-00004. [DOI] [PubMed] [Google Scholar]
  39. Schwede T., Kopp J., Guex N., Peitsch M.C. SWISSMODEL: An automated protein homology-modeling server. Nucleic Acids Res. 2003;31:3381–3385. doi: 10.1093/nar/gkg520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Shi X., Parthun M.R., Jaehning J.A. The yeast EGD2 gene encodes a homologue of the alpha NAC subunit of the human nascent-polypeptide-associated complex. Gene. 1995;165:199–202. doi: 10.1016/0378-1119(95)00577-S. [DOI] [PubMed] [Google Scholar]
  41. Spreter T., Pech M., Beatrix B. The crystal structure of archaeal nascent polypeptide-associated complex (NAC) reveals a unique fold and the presence of a ubiquitin-associated domain. J Biol Chem. 2005;280:15849–15854. doi: 10.1074/jbc.M500160200. [DOI] [PubMed] [Google Scholar]
  42. St-Arnaud R. Transcriptional regulation during mesenchymal cell differentiation: the role of coactivators. Crit Rev Eukaryot Gene Expr. 1998;8:191–202. doi: 10.1615/CritRevEukarGeneExpr.v8.i2.50. [DOI] [PubMed] [Google Scholar]
  43. St-Arnaud R., Quelo I. Transcriptional coactivators potentiating AP-1 function in bone. Front Biosci. 1998;3:d838–d848. doi: 10.2741/A327. [DOI] [PubMed] [Google Scholar]
  44. Thiede B., Dimmler C., Siejak F., Rudel T. Predominant identification of RNA-binding proteins in Fas-induced apoptosis by proteome analysis. J Biol Chem. 2001;276:26044–26050. doi: 10.1074/jbc.M101062200. [DOI] [PubMed] [Google Scholar]
  45. Wang S., Sakai H., Wiedmann M. NAC covers ribosome-associated nascent chains thereby forming a protective environment for regions of nascent chains just emerging from the peptidyl transferase center. J Cell Biol. 1995;130:519–528. doi: 10.1083/jcb.130.3.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wegrzyn R.D., Hofmann D., Merz F., Nikolay R., Rauch T., Graf C., Deuerling E. A conserved motif is prerequisite for the interaction of NAC with ribosomal protein L23 and nascent chains. J Biol Chem. 2006;281:2847–2857. doi: 10.1074/jbc.M511420200. [DOI] [PubMed] [Google Scholar]
  47. Whitby M.C., Dixon J. Fission yeast nascent polypeptide-associated complex binds to four-way DNA junctions. J Mol Biol. 2001;306:703–716. doi: 10.1006/jmbi.2000.4407. [DOI] [PubMed] [Google Scholar]
  48. Wiedmann B., Sakai H., Davis T.A., Wiedmann M. A protein complex required for signal-sequence-specific sorting and translocation. Nature. 1994;370:434–440. doi: 10.1038/370434a0. [DOI] [PubMed] [Google Scholar]
  49. Yotov W.V., Moreau A., St-Arnaud R. The alpha chain of the nascent polypeptide-associated complex functions as a transcriptional coactivator. Mol Cell Biol. 1998;18:1303–1311. doi: 10.1128/MCB.18.3.1303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Zhang X.-J., Matthews B.W. EDPDB: a multifunctional tool for protein structure analysis. J Appl Cryst. 1995;28:624–630. doi: 10.1107/S0021889895001063. [DOI] [Google Scholar]
  51. Zheng X.M., Moncollin V., Egly J.M., Chambon P. A general transcription factor forms a stable complex with RNA polymerase B (II) Cell. 1987;50:361–368. doi: 10.1016/0092-8674(87)90490-9. [DOI] [PubMed] [Google Scholar]
  52. Zheng X.M., Black D., Chambon P., Egly J.M. Sequencing and expression of complementary DNA for the general transcription factor BTF3. Nature. 1990;344:556–559. doi: 10.1038/344556a0. [DOI] [PubMed] [Google Scholar]
  53. Zuo L., Ogle C.K., Fischer J.E., Nussbaum M.S. mRNA differential display of colonic mucosa cells in ulcerative colitis. J Surg Res. 1997;69:119–127. doi: 10.1006/jsre.1997.5041. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

13238_2010_49_MOESM1_ESM.pdf (393.6KB, pdf)

Supplementary material, approximately 393 KB.


Articles from Protein & Cell are provided here courtesy of Oxford University Press

RESOURCES