Skip to main content
Protein & Cell logoLink to Protein & Cell
. 2010 Feb 7;1(1):96–105. doi: 10.1007/s13238-010-0012-3

Crystal structure of cytotoxin protein suilysin from Streptococcus suis

Lingfeng Xu 1, Bo Huang 1, Huamao Du 2,3, Xuejun C Zhang 4, Jianguo Xu 3,, Xuemei Li 1,, Zihe Rao 1
PMCID: PMC4875105  PMID: 21204001

Abstract

Cholesterol-dependent cytolysins (CDC) are pore forming toxins. A prototype of the CDC family members is perfringolysin O (PFO), which directly binds to the cell membrane enriched in cholesterol, causing cell lysis. However, an exception of this general observation is intermedilysin (ILY) of Streptococcus intermedius, which requires human CD59 as a receptor in addition to cholesterol for its hemolytic activity. A possible explanation of this functional difference is the conformational variation between the C-terminal domains of the two toxins, particularly in the highly conserved undecapeptide termed tryptophan rich motif. Here, we present the crystal structure of suilysin, a CDC toxin from the infectious swine pathogen Streptococcus suis. Like PFO, suilysin does not require a host receptor for hemolytic activity; yet the crystal structure of suilysin exhibits a similar conformation in the tryptophan rich motif to ILY. This observation suggests that the current view of the structure-function relationship between CDC proteins and membrane association is far from complete.

Keywords: suilysin, cholesterol-dependent cytolysin, crystal structure

Footnotes

These authors contributed equally to this work.

Contributor Information

Jianguo Xu, Email: xujg@public.bta.net.cn.

Xuemei Li, Email: lixm@sun5.ibp.ac.cn.

References

  1. Adams P.D., Grosse-Kunstleve R.W., Hung L.W., Ioerger T.R., McCoy A.J., Moriarty N.W., Read R.J., Sacchettini J.C., Sauter N.K., Terwilliger T.C. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D Biol Crystallogr. 2002;58:1948–1954. doi: 10.1107/S0907444902016657. [DOI] [PubMed] [Google Scholar]
  2. Bahadur R.P., Chakrabarti P., Rodier F., Janin J. A dissection of specific and non-specific protein-protein interfaces. J Mol Biol. 2004;336:943–955. doi: 10.1016/j.jmb.2003.12.073. [DOI] [PubMed] [Google Scholar]
  3. Bailey S. The CCP4 suite: programs for protein crystallography. Acta Crystallographica. 1994;D50:760–763. doi: 10.1107/S0907444994003112. [DOI] [PubMed] [Google Scholar]
  4. Bork P., Holm L., Sander C. The immunoglobulin fold. Structural classification, sequence patterns and common core. J Mol Biol. 1994;242:309–320. doi: 10.1006/jmbi.1994.1582. [DOI] [PubMed] [Google Scholar]
  5. Bourdeau, R.W., Malito, E., Chenal, A., Bishop, B.L., Musch, M.W., Villereal, M.L., Chang, E.B., Mosser, E.M., Rest, R.F., and Tang, W. J. (2009). Cellular functions and X-ray structure of anthrolysin O, a cholesterol-dependent cytolysin secreted by Bacillus anthracis. J Biol Chem. [DOI] [PMC free article] [PubMed]
  6. Davis I.W., Leaver-Fay A., Chen V.B., Block J.N., Kapral G.J., Wang X., Murray L.W., Arendall W.B., 3rd, Snoeyink J., Richardson J.S., et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 2007;35:W375–383. doi: 10.1093/nar/gkm216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DeLano W.L. The PyMOL Molecular Graphics System. Palo Alto, CA, USA: DeLano Scientific; 2002. [Google Scholar]
  8. Emsley P., Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr. 2004;60:2126–2132. doi: 10.1107/S0907444904019158. [DOI] [PubMed] [Google Scholar]
  9. French G.S., Wilson K.S. On the treatment of negative intensity observations. Acta Cryst. 1978;A34:517–525. doi: 10.1107/S0567739478001114. [DOI] [Google Scholar]
  10. Giddings K.S., Johnson A.E., Tweten R.K. Redefining cholesterol’s role in the mechanism of the cholesterol-dependent cytolysins. Proc Natl Acad Sci U S A. 2003;100:11315–11320. doi: 10.1073/pnas.2033520100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Giddings K.S., Zhao J., Sims P.J., Tweten R.K. Human CD59 is a receptor for the cholesterol-dependent cytolysin intermedilysin. Nat Struct Mol Biol. 2004;11:1173–1178. doi: 10.1038/nsmb862. [DOI] [PubMed] [Google Scholar]
  12. Gottschalk M., Segura M. The pathogenesis of the meningitis caused by Streptococcus suis: the unresolved questions. Vet Microbiol. 2000;76:259–272. doi: 10.1016/S0378-1135(00)00250-9. [DOI] [PubMed] [Google Scholar]
  13. Jacobs A.A., Loeffen P.L., van den Berg A.J., Storm P.K. Identification, purification, and characterization of a thiolactivated hemolysin (suilysin) of Streptococcus suis. Infect Immun. 1994;62:1742–1748. doi: 10.1093/benz/9780199773787.article.b00034458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Laskowski R.A., MacArthur M.W., Moss D.S., Thornton J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr. 1993;26:283–291. doi: 10.1107/S0021889892009944. [DOI] [Google Scholar]
  15. Matthews B.W. Solvent contents of protein crystals. J Mol Biol. 1968;33:491–497. doi: 10.1016/0022-2836(68)90205-2. [DOI] [PubMed] [Google Scholar]
  16. Nagamune H., Ohkura K., Sukeno A., Cowan G., Mitchell T.J., Ito W., Ohnishi O., Hattori K., Yamato M., Hirota K., et al. The human-specific action of intermedilysin, a homolog of streptolysin O, is dictated by domain 4 of the protein. Microbiol Immunol. 2004;48:677–692. doi: 10.1111/j.1348-0421.2004.tb03479.x. [DOI] [PubMed] [Google Scholar]
  17. Nagamune H., Ohnishi C., Katsuura A., Fushitani K., Whiley R.A., Tsuji A., Matsuda Y. Intermedilysin, a novel cytotoxin specific for human cells secreted by Streptococcus intermedius UNS46 isolated from a human liver abscess. Infect Immun. 1996;64:3093–3100. doi: 10.1128/iai.64.8.3093-3100.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Otwinowski Z., Minor W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 1997;276:307–326. doi: 10.1016/S0076-6879(97)76066-X. [DOI] [PubMed] [Google Scholar]
  19. Painter J., Merritt E.A. Optimal description of a protein structure in terms of multiple groups undergoing TLS motion. Acta Crystallogr D Biol Crystallogr. 2006;62:439–450. doi: 10.1107/S0907444906005270. [DOI] [PubMed] [Google Scholar]
  20. Polekhina G., Giddings K.S., Tweten R.K., Parker M.W. Insights into the action of the superfamily of cholesterol-dependent cytolysins from studies of intermedilysin. Proc Natl Acad Sci U S A. 2005;102:600–605. doi: 10.1073/pnas.0403229101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ponting C.P. Chlamydial homologues of the MACPF (MAC/perforin) domain. Curr Biol. 1999;9:R911–913. doi: 10.1016/S0960-9822(00)80102-5. [DOI] [PubMed] [Google Scholar]
  22. Ramachandran R., Tweten R.K., Johnson A.E. Membrane-dependent conformational changes initiate cholesteroldependent cytolysin oligomerization and intersubunit beta-strand alignment. Nat Struct Mol Biol. 2004;11:697–705. doi: 10.1038/nsmb793. [DOI] [PubMed] [Google Scholar]
  23. Rosado C.J., Buckle A.M., Law R.H., Butcher R.E., Kan W.T., Bird C.H., Ung K., Browne K.A., Baran K., Bashtannyk-Puhalovich T. A., et al. A common fold mediates vertebrate defense and bacterial attack. Science. 2007;317:1548–1551. doi: 10.1126/science.1144706. [DOI] [PubMed] [Google Scholar]
  24. Rossjohn J., Feil S.C., McKinstry W.J., Tweten R.K., Parker M. W. Structure of a cholesterol-binding, thiol-activated cytolysin and a model of its membrane form. Cell. 1997;89:685–692. doi: 10.1016/S0092-8674(00)80251-2. [DOI] [PubMed] [Google Scholar]
  25. Rossjohn J., Polekhina G., Feil S.C., Morton C.J., Tweten R.K., Parker M.W. Structures of perfringolysin O suggest a pathway for activation of cholesterol-dependent cytolysins. J Mol Biol. 2007;367:1227–1236. doi: 10.1016/j.jmb.2007.01.042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schneider T.R., Sheldrick G.M. Substructure solution with SHELXD. Acta Crystallogr D Biol Crystallogr. 2002;58:1772–1779. doi: 10.1107/S0907444902011678. [DOI] [PubMed] [Google Scholar]
  27. Shatursky O., Heuck A.P., Shepard L.A., Rossjohn J., Parker M. W., Johnson A.E., Tweten R.K. The mechanism of membrane insertion for a cholesterol-dependent cytolysin: a novel paradigm for pore-forming toxins. Cell. 1999;99:293–299. doi: 10.1016/S0092-8674(00)81660-8. [DOI] [PubMed] [Google Scholar]
  28. Shepard L.A., Heuck A.P., Hamman B.D., Rossjohn J., Parker M. W., Ryan K.R., Johnson A.E., Tweten R.K. Identification of a membrane-spanning domain of the thiol-activated pore-forming toxin Clostridium perfringens perfringolysin O: an alpha-helical to beta-sheet transition identified by fluorescence spectroscopy. Biochemistry. 1998;37:14563–14574. doi: 10.1021/bi981452f. [DOI] [PubMed] [Google Scholar]
  29. Soltani C.E., Hotze E.M., Johnson A.E., Tweten R.K. Specific protein-membrane contacts are required for prepore and pore assembly by a cholesterol-dependent cytolysin. J Biol Chem. 2007;282:15709–15716. doi: 10.1074/jbc.M701173200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Soltani C.E., Hotze E.M., Johnson A.E., Tweten R.K. Structural elements of the cholesterol-dependent cytolysins that are responsible for their cholesterol-sensitive membrane interactions. Proc Natl Acad Sci U S A. 2007;104:20226–20231. doi: 10.1073/pnas.0708104105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997;25:4876–4882. doi: 10.1093/nar/25.24.4876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Tilley S.J., Orlova E.V., Gilbert R.J., Andrew P.W., Saibil H.R. Structural basis of pore formation by the bacterial toxin pneumolysin. Cell. 2005;121:247–256. doi: 10.1016/j.cell.2005.02.033. [DOI] [PubMed] [Google Scholar]
  33. Tweten R.K. Cholesterol-dependent cytolysins, a family of versatile pore-forming toxins. Infect Immun. 2005;73:6199–6209. doi: 10.1128/IAI.73.10.6199-6209.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Tweten R.K., Parker M.W., Johnson A.E. The cholesterol-dependent cytolysins. Curr Top Microbiol Immunol. 2001;257:15–33. doi: 10.1007/978-3-642-56508-3_2. [DOI] [PubMed] [Google Scholar]
  35. Zhang X., Matthews B.W. EDPDB: A multifunctional tool for protein structure analysis. J Appl Crystallogr. 1995;28:624–630. doi: 10.1107/S0021889895001063. [DOI] [Google Scholar]

Articles from Protein & Cell are provided here courtesy of Oxford University Press

RESOURCES