Skip to main content
Protein & Cell logoLink to Protein & Cell
. 2010 Mar 18;1(1):82–95. doi: 10.1007/s13238-010-0006-1

Identification of arylamine N-acetyltransferase inhibitors as an approach towards novel anti-tuberculars

Isaac M Westwood 1,2, Sanjib Bhakta 1, Angela J Russell 1,2, Elizabeth Fullam 1,2, Matthew C Anderton 1, Akane Kawamura 1,2, Andrew W Mulvaney 2, Richard J Vickers 2, Veemal Bhowruth 3, Gurdyal S Besra 3, Ajit Lalvani 4, Stephen G Davies 2, Edith Sim 1,
PMCID: PMC4875111  PMID: 21204000

Abstract

New anti-tubercular drugs and drug targets are urgently needed to reduce the time for treatment and also to identify agents that will be effective against Mycobacterium tuberculosis persisting intracellularly. Mycobacteria have a unique cell wall. Deletion of the gene for arylamine N-acetyltransferase (NAT) decreases mycobacterial cell wall lipids, particularly the distinctive mycolates, and also increases antibiotic susceptibility and killing within macrophage of Mycobacterium bovis BCG. The nat gene and its associated gene cluster are almost identical in sequence in M. bovis BCG and M. tuberculosis. The gene cluster is essential for intracellular survival of mycobacteria. We have therefore used pure NAT protein for high-throughput screening to identify several classes of small molecules that inhibit NAT activity. Here, we characterize one class of such molecules—triazoles—in relation to its effects on the target enzyme and on both M. bovis BCG and M. tuberculosis. The most potent triazole mimics the effects of deletion of the nat gene on growth, lipid disruption and intracellular survival. We also present the structure-activity relationship between NAT inhibition and effects on mycobacterial growth, and use ligand-protein analysis to give further insight into the structure-activity relationships. We conclude that screening a chemical library with NAT protein yields compounds that have high potential as anti-tubercular agents and that the inhibitors will allow further exploration of the biochemical pathway in which NAT is involved.

Electronic Supplementary Material

The online version of this article (doi: 10.1007/s13238-010-0006-1contains supplementary material, which is available to authorized users.

Keywords: N-acetyltransferase, Mycobacterium tuberculosis, triazoles, screening

Electronic Supplementary Material

Appendix (PDF 480 KB) (480KB, pdf)

Footnotes

Electronic Supplementary Material

The online version of this article (doi: 10.1007/s13238-010-0006-1contains supplementary material, which is available to authorized users.

These authors contributed equally to the work.

References

  1. Al-Balas Q., Anthony N.G., Al-Jaidi B., Alnimr A., Abbott G., Brown A.K., Taylor R.C., Besra G.S., McHugh T.D., Gillespie S.H., et al. Identification of 2-aminothiazole-4-carboxylate derivatives active against Mycobacterium tuberculosis H37Rv and the beta-ketoacyl-ACP synthase mtFabH. PLoS ONE. 2009;4:e5617. doi: 10.1371/journal.pone.0005617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderton M.C., Bhakta S., Besra G.S., Jeavons P., Eltis L.D., Sim E. Characterization of the putative operon containing arylamine N-acetyltransferase (nat) in Mycobacterium bovis BCG. Mol Microbiol. 2006;59:181–192. doi: 10.1111/j.1365-2958.2005.04945.x. [DOI] [PubMed] [Google Scholar]
  3. Besra G.S. Preparation of cell-wall fractions from mycobacteria. Methods Mol Biol. 1998;101:91–107. doi: 10.1385/0-89603-471-2:91. [DOI] [PubMed] [Google Scholar]
  4. Bhakta S., Besra G.S., Upton A.M., Parish T., Sholto-Douglas-Vernon C., Gibson K.J., Knutton S., Gordon S., DaSilva R.P., Anderton M.C., et al. Arylamine N-Acetyltransferase Is Required for Synthesis of Mycolic Acids and Complex Lipids in Mycobacterium bovis BCG and Represents a Novel Drug Target. J Exp Med. 2004;199:1191–1199. doi: 10.1084/jem.20031956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brooke E.W., Davies S.G., Mulvaney A.W., Pompeo F., Sim E., Vickers R.J. An approach to identifying novel substrates of bacterial arylamine N-acetyltransferases. Bioorg Med Chem. 2003;11:1227–1234. doi: 10.1016/S0968-0896(02)00642-9. [DOI] [PubMed] [Google Scholar]
  6. Brooke E.W., Davies S.G., Mulvaney A.W., Okada M., Pompeo F., Sim E., Vickers R.J., Westwood I.M. Synthesis and in vitro evaluation of novel small molecule inhibitors of bacterial arylamine N-acetyltransferases (NATs) Bioorg Med Chem Lett. 2003;13:2527–2530. doi: 10.1016/S0960-894X(03)00484-0. [DOI] [PubMed] [Google Scholar]
  7. Cole S.T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S.V., Eiglmeier K., Gas S., Barry C.E., 3rd, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998;393:537–544. doi: 10.1038/31159. [DOI] [PubMed] [Google Scholar]
  8. Cole S.T., Alzari P.M. Microbiology. TB-a new target, a new drug. Science. 2005;307:214–215. doi: 10.1126/science.1108379. [DOI] [PubMed] [Google Scholar]
  9. Dhiman R.K., Mahapatra S., Slayden R.A., Boyne M.E., Lenaerts A., Hinshaw J.C., Angala S.K., Chatterjee D., Biswas K., Narayanasamy P., et al. Menaquinone synthesis is critical for maintaining mycobacterial viability during exponential growth and recovery from non-replicating persistence. Mol Microbiol. 2009;72:85–97. doi: 10.1111/j.1365-2958.2009.06625.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Diacon A.H., Pym A., Grobusch M., Patientia R., Rustomjee R., Page-Shipp L., Pistorius C., Krause R., Bogoshi M., Churchyard G., et al. The diarylquinoline TMC207 for multidrugresistant tuberculosis. N Engl J Med. 2009;360:2397–2405. doi: 10.1056/NEJMoa0808427. [DOI] [PubMed] [Google Scholar]
  11. Dye C. Global epidemiology of tuberculosis. Lancet. 2006;367:938–940. doi: 10.1016/S0140-6736(06)68384-0. [DOI] [PubMed] [Google Scholar]
  12. Evans D.A., Manley K.A., McKusick V.A. Genetic control of isoniazid metabolism in man. Br Med J. 1960;5197:485–491. doi: 10.1136/bmj.2.5197.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Foroumadi A., Kargar Z., Sakhteman A., Sharifzadeh Z., Feyzmohammadi R., Kazemi M., Shafiee A. Synthesis and antimycobacterial activity of some alkyl [5-(nitroaryl)-1,3,4-thiadiazol-2-ylthio]propionates. Bioorg Med Chem Lett. 2006;16:1164–1167. doi: 10.1016/j.bmcl.2005.11.087. [DOI] [PubMed] [Google Scholar]
  14. Fullam E., Westwood I.M., Anderton M.C., Lowe E.D., Sim E., Noble M.E.M. Divergence of cofactor recognition across evolution: Coenzyme A binding in a prokaryotic arylamine N-acetyltransferase. J Mol Biol. 2007;375:178–191. doi: 10.1016/j.jmb.2007.10.019. [DOI] [PubMed] [Google Scholar]
  15. Fullam E., Kawamura A., Wilkinson H., Abuhammad A., Westwood I., Sim E. Comparison of the Arylamine N-acetyltransferase from Mycobacterium marinum and Mycobacterium tuberculosis. Protein J. 2009;28:281–293. doi: 10.1007/s10930-009-9193-0. [DOI] [PubMed] [Google Scholar]
  16. Holton S.J., Dairou J., Sandy J., Rodrigues-Lima F., Dupret J.M., Noble M.E., Sim E. Structure of Mesorhizobium loti arylamine N-acetyltransferase 1. Acta Crystallogr C. 2005;61:14–16. doi: 10.1107/S1744309104030659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jacobson, R., Ramsay, J., Aller, H. and Thirugnanam, M. (1987). 1-Dimethylcarbamoyl-3-substituted-5-substituted-1H-1,2,4-triazoles. European Patent Office, EP0213718.
  18. Jeney E., Zsolnai T. Studies in search of new tuberculostatic drugs. I. Hydrazine derivatives, carbolic acid, phenols, quaternary ammonium compounds and their intermediaries. Zentralblatt fur Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene 1 Abt Medizinisch-hygienische Bakteriologie. Virusforschung und Parasitologie. 1956;167:55–64. [PubMed] [Google Scholar]
  19. Kane J.M., Staeger M.A., Dalton C.R., Miller F.P., Dudley M.W., Ogden A.M., Kehne J.H., Ketteler H.J., McCloskey T.C., Senyah Y., et al. 5-Aryl-3-(alkylthio)-4H-1,2,4-triazoles as selective antagonists of strychnine-induced convulsions and potential antispastic agents. J Med Chem. 1994;37:125–132. doi: 10.1021/jm00027a015. [DOI] [PubMed] [Google Scholar]
  20. Kawamura A., Graham J., Mushtaq A., Tsiftsoglou S.A., Vath G.M., Hanna P.E., Wagner C.R., Sim E. Eukaryotic arylamine N-acetyltransferase. Investigation of substrate specificity by high-throughput screening. Biochem Pharmacol. 2005;69:347–359. doi: 10.1016/j.bcp.2004.09.014. [DOI] [PubMed] [Google Scholar]
  21. Kawamura A., Westwood I., Wakefield L., Long H., Zhang N., Walters K., Redfield C., Sim E. Mouse Nacetyltransferase type 2, the homologue of human Nacetyltransferase type 1. Biochem Pharmacol. 2008;75:1550–1560. doi: 10.1016/j.bcp.2007.12.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kendall S.L., Withers M., Soffair C.N., Moreland N.J., Gurcha S., Sidders B., Frita R., Ten Bokum A., Besra G.S., Lott J.S., et al. A highly conserved transcriptional repressor controls a large regulon involved in lipid degradation in Mycobacterium smegmatis and Mycobacterium tuberculosis. Mol Microbiol. 2007;65:684–699. doi: 10.1111/j.1365-2958.2007.05827.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lack N., Lowe E.D., Liu J., Eltis L.D., Noble M.E.M., Sim E., Westwood I.M. Structure of HsaD, a steroid-degrading hydrolase, from Mycobacterium tuberculosis. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2008;64:2–7. doi: 10.1107/S1744309107065931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lack N., Kawamura A., Fullam E., Laurieri N., Beard S., Russell A. J., Evangelopoulos D., Westwood I., Sim E. Temperature stability of proteins essential for the intracellular survival of Mycobacterium tuberculosis. Biochemical J. 2009;418:369–378. doi: 10.1042/BJ20082011. [DOI] [PubMed] [Google Scholar]
  25. Lack, N.A., Yam, K.C., Lowe, E.D., Horsman, G.P., Owen, R.L., Sim, E., and Eltis, L.D. (2009b). Characterization of a C-C hydrolase from Mycobacterium tuberculosis involved in cholesterol metabolism. J Biol Chem. In press. DOI 10.1074/jbc.M109.058081. [DOI] [PMC free article] [PubMed]
  26. Ley S.V., Baxendale I.R., Bream R.N., Jackson P.S., Leach A.G., Longbottom D.A., Nesi M., Scott J.S., Storer I., Taylor S.J. Multi-step organis synthesis using solid-supported reagents and scavengers: a new paradigm in chemical library generation. J Chem Soc, Perkin Trans 1. 2000;23:3815–4195. doi: 10.1039/b006588i. [DOI] [Google Scholar]
  27. Lin G., Li D., de Carvalho L.P., Deng H., Tao H., Vogt G., Wu K., Schneider J., Chidawanyika T., Warren J.D., et al. Inhibitors selective for mycobacterial versus human proteasomes. Nature. 2009;461:621–626. doi: 10.1038/nature08357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Macaev F., Rusu G., Pogrebnoi S., Gudima A., Stingaci E., Vlad L., Shvets N., Kandemirli F., Dimoglo A., Reynolds R. Synthesis of novel 5-aryl-2-thio-1,3,4-oxadiazoles and the study of their structure-anti-mycobacterial activities. Bioorg Med Chem. 2005;13:4842–4850. doi: 10.1016/j.bmc.2005.05.011. [DOI] [PubMed] [Google Scholar]
  29. Makarov V., Manina G., Mikusova K., Mollmann U., Ryabova O., Saint-Joanis B., Dhar N., Pasca M.R., Buroni S., Lucarelli A.P., et al. Benzothiazinones kill Mycobacterium tuberculosis by blocking arabinan synthesis. Science. 2009;324:801–804. doi: 10.1126/science.1171583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Malbec F., Milcent R., Barbier G. Derivatives of 2,4-dihydro-1,2,4-triazole-3-thione and 2-amino-1,3,4-thiadiazole from thiosemicarbazones of esters. J Heterocycl Chem. 1984;21:1689–1698. doi: 10.1002/jhet.5570210624. [DOI] [Google Scholar]
  31. Maxmen A., Clifton E.B., III TB’s strategic opponent. J Exp Med. 2009;206:494–495. doi: 10.1084/jem.2063pi. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Moskowitz H., Mignot A., Miocque M. On the synthesis of thiazolotriazolylacetic acids. J Heterocycl Chem. 1980;17:1321–1323. doi: 10.1002/jhet.5570170637. [DOI] [Google Scholar]
  33. Nagy J.M., Cass A.E., Brown K.A. Purification and characterization of recombinant catalase-peroxidase, which confers isoniazid sensitivity in Mycobacterium tuberculosis. J Biol Chem. 1997;272:31265–31271. doi: 10.1074/jbc.272.50.31265. [DOI] [PubMed] [Google Scholar]
  34. Neyrolles O., Hernandez-Pando R., Pietri-Rouxel F., Fornes P., Tailleux L., Barrios Payan J.A., Pivert E., Bordat Y., Aguilar D., Prevost M.C., et al. Is adipose tissue a place for Mycobacterium tuberculosis persistence? PLoS ONE. 2006;1:e43. doi: 10.1371/journal.pone.0000043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Nodzu R., Watanabe H., Kuwata S., Nagaishi C., Teramatsu T. Chemotherapy of tuberculosis. IV. Syntheses of m- and paminophenol alkyl ethers and their bacteriostatic actions on Mycobacterium tuberculosis. Yakugaku Zasshi. 1954;74:872–875. [Google Scholar]
  36. Pangborn A.B., Giardello M.A., Grubbs R.H., Rosen R.K., Timmers F.J. Safe and convenient procedure for solvent purification. Organometallics. 1996;15:1518–1520. doi: 10.1021/om9503712. [DOI] [Google Scholar]
  37. Payton M., Auty R., Delgoda R., Everett M., Sim E. Cloning and characterization of arylamine N-acetyltransferase genes from Mycobacterium smegmatis and Mycobacterium tuberculosis: increased expression results in isoniazid resistance. J Bacteriol. 1999;181:1343–1347. doi: 10.1128/jb.181.4.1343-1347.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera-a visualization system for exploratory research and analysis. J Comput Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. [DOI] [PubMed] [Google Scholar]
  39. Raman K., Rajagopalan P., Chandra N. Flux balance analysis of mycolic acid pathway: targets for anti-tubercular drugs. PLoS Comput Chem. 2005;1:e46. doi: 10.1371/journal.pcbi.0010046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Rengarajan J., Bloom B.R., Rubin E.J. Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages. Proc Natl Acad Sci U S A. 2005;102:8327–8332. doi: 10.1073/pnas.0503272102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Russell A.J., Westwood I.M., Crawford M.H., Robinson J., Kawamura A., Redfield C., Laurieri N., Lowe E.D., Davies S. G., Sim E. Selective small molecule inhibitors of the potential breast cancer marker, human arylamine Nacetyltransferase 1, and its murine homologue, mouse arylamine N-acetyltransferase 2. Bioorg Med Chem. 2009;17:905–918. doi: 10.1016/j.bmc.2008.11.032. [DOI] [PubMed] [Google Scholar]
  42. Sali A., Blundell T.L. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993;234:779–815. doi: 10.1006/jmbi.1993.1626. [DOI] [PubMed] [Google Scholar]
  43. Sandy J., Mushtaq A., Kawamura A., Sinclair J., Sim E., Noble M. The structure of arylamine Nacetyltransferase from Mycobacterium smegmatis-an enzyme which inactivates the anti-tubercular drug, isoniazid. J Mol Biol. 2002;318:1071–1083. doi: 10.1016/S0022-2836(02)00141-9. [DOI] [PubMed] [Google Scholar]
  44. Sikora A.L., Frankel B.A., Blanchard J.S. Kinetic and chemical mechanism of arylamine N-acetyltransferase from Mycobacterium tuberculosis. Biochemistry. 2008;47:10781–10789. doi: 10.1021/bi800398c. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Sim E., Sandy J., Evangelopoulos D., Fullam E., Bhakta S., Westwood I., Krylova A., Lack N., Noble M. Arylamine N-acetyltransferases in mycobacteria. Current Drug Metabolism. 2008;9:510–519. doi: 10.2174/138920008784892100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Sinclair J.C., Sandy J., Delgoda R., Sim E., Noble M.E. Structure of arylamine N-acetyltransferase reveals a catalytic triad. Nat Struct Biol. 2000;7:560–564. doi: 10.1038/76783. [DOI] [PubMed] [Google Scholar]
  47. Singh R., Fiakpui C., Galpin J., Stewart J., Singh M.P., Micetich R.G. Synthesis and structure-activity relationship of C-3 substitued triazolylthiomethyl cephems. Eur J Med Chem. 1996;31:301–309. doi: 10.1016/0223-5234(96)80367-9. [DOI] [Google Scholar]
  48. Stewart G.R., Newton S.M., Wilkinson K.A., Humphreys I.R., Murphy H.N., Robertson B.D., Wilkinson R.J., Young D.B. The stress-responsive chaperone alpha-crystallin 2 is required for pathogenesis of Mycobacterium tuberculosis. Mol Microbiol. 2005;55:1127–1137. doi: 10.1111/j.1365-2958.2004.04450.x. [DOI] [PubMed] [Google Scholar]
  49. Story A., van Hest R., Hayward A. Tuberculosis and social exclusion. BMJ. 2006;333:57–58. doi: 10.1136/bmj.333.7558.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Upton A.M., Mushtaq A., Victor T.C., Sampson S.L., Sandy J., Smith D.M., van Helden P.V., Sim E. Arylamine Nacetyltransferase of Mycobacterium tuberculosis is a polymorphic enzyme and a site of isoniazid metabolism. Mol Microbiol. 2001;42:309–317. doi: 10.1046/j.1365-2958.2001.02648.x. [DOI] [PubMed] [Google Scholar]
  51. Van der Geize R., Yam K., Heuser T., Wilbrink M.H., Hara H., Anderton M.C., Sim E., Dijkhuizen L., Davies J.E., Mohn W.W., et al. A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proc Natl Acad Sci U S A. 2007;104:1947–1952. doi: 10.1073/pnas.0605728104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Verdonk M.L., Cole J.C., Hartshorn M.J., Murray C.W., Taylor R.D. Improved protein-ligand docking using GOLD. Proteins. 2003;52:609–623. doi: 10.1002/prot.10465. [DOI] [PubMed] [Google Scholar]
  53. Wallace A.C., Laskowski R.A., Thornton J.M. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 1995;8:127–134. doi: 10.1093/protein/8.2.127. [DOI] [PubMed] [Google Scholar]
  54. Wang W., Zhang C., Marimuthu A., Krupka H.I., Tabrizizad M., Shelloe R., Mehra U., Eng K., Nguyen H., Settachatgul C., et al. The crystal structures of human steroidogenic factor-1 and liver receptor homologue-1. Proc Natl Acad Sci U S A. 2005;102:7505–7510. doi: 10.1073/pnas.0409482102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Weber W.W., Hein D.W. N-acetylation pharmacogenetics. Pharmacol Rev. 1985;37:25–79. [PubMed] [Google Scholar]
  56. Westwood I.M., Holton S.J., Rodrigues-Lima F., Dupret J.M., Bhakta S., Noble M.E., Sim E. Expression, purification, characterization and structure of Pseudomonas aeruginosa arylamine N-acetyltransferase. Biochem J. 2005;385:605–612. doi: 10.1042/BJ20041330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Westwood I.M., Kawamura A., Fullam E., Russell A.J., Davies S. G., Sim E. Structure and mechanism of arylamine Nacetyltransferases. Curr Top Med Chem. 2006;6:1641–1654. doi: 10.2174/156802606778108979. [DOI] [PubMed] [Google Scholar]
  58. Yam K.C., D’Angelo I., Kalscheuer R., Zhu H., Wang J.X., Snieckus V., Ly L.H., Converse P.J., Jacobs W.R., Jr., Strynadka N., et al. Studies of a ring-cleaving dioxygenase illuminate the role of cholesterol metabolism in the pathogenesis of Mycobacterium tuberculosis. PLoS Pathog. 2009;5:e1000344. doi: 10.1371/journal.ppat.1000344. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Appendix (PDF 480 KB) (480KB, pdf)

Articles from Protein & Cell are provided here courtesy of Oxford University Press

RESOURCES