Skip to main content
Protein & Cell logoLink to Protein & Cell
. 2010 Feb 7;1(1):48–58. doi: 10.1007/s13238-010-0007-0

Cryo-electron microscopy reconstructions of two types of wild rabbit hemorrhagic disease viruses characterized the structural features of Lagovirus

Zhongjun Hu 1, Xiaojuan Tian 1,2, Yujia Zhai 1, Wei Xu 1, Dong Zheng 2,, Fei Sun 1,
PMCID: PMC4875112  PMID: 21203997

Abstract

Rabbit hemorrhagic disease was described in China in 1984 and can cause hemorrhagic necrosis of the liver within two or three days after infection. The etiological agent, rabbit hemorrhagic disease virus (RHDV), belongs to the Lagovirus genus in the Caliciviridae family. Compared to other calicivirus, such as rNV and SMSV, the structure of Lagovirus members is not well characterized. In this report, structures of two types of wild RHDV particles, the intact virion and the core-like particle (CLP), were reconstructed by cryo-electron microscopy at 11 &0A and 17 &0A, respectively. This is the first time the 3D structure of wild caliciviruses CLP has been provided, and the 3D structure of intact RHDV virion is the highest resolution structure in Lagovirus. Comparison of the intact virion and CLP structures clearly indicated that CLP was produced from the intact virion with the protrusion dissociated. In contrast with the crystal structures of recombinant Norovirus and San Miguel sea lion virus, the capsomers of RHDV virion exhibited unique structural features and assembly modes. Both P1 and P2 subdomains have interactions inside the AB capsomer, while only P2 subdomains have interaction inside CC capsomer. The pseudo atomic models of RHDV capsomers were constructed by homology modeling and density map fitting, and the rotation of RHDV VP60 P domain with respect to its S domain, compared with SMSV, was observed. Collectively, our cryo-electron microscopic studies of RHDV provide close insight into the structure of Lagovirus, which is important for functional analysis and better vaccine development in the future.

Keywords: rabbit hemorrhagic disease virus, calicivirus, Lagovirus, core-like particle, cryo-electron microscopy reconstruction

Footnotes

These authors contributed equally to this work.

Contributor Information

Dong Zheng, Email: zhengd@bnu.edu.cn.

Fei Sun, Email: feisun@ibp.ac.cn.

References

  1. Alexandrov M., Peshev R., Bozhkov S., Yanchev I., Doumanova L. Electron- and immunoelectron-microscopic investigation on the rabbit haemorrhagic disease virus. Comp Immunol Microbiol Infect Dis. 1993;16:21–27. doi: 10.1016/0147-9571(93)90057-C. [DOI] [PubMed] [Google Scholar]
  2. Antonio L., Lorenzo C. How Many Caliciviruses are there in Rabbits? A Review on RHDV and Correlated Viruses. Lagomorph Biology. 2008;4:263–278. [Google Scholar]
  3. Barbieri I., Lavazza A., Brocchi E., Konig M., and Capucci, L. (1997). Morphological, structural and antigenic modifications of rabbit haemorrhagic disease virus in the course of the disease. In: Chasey D., Gaskell R.M., Clarke I.N. (eds) Proceedings of the 1st symposium on calicivirus of the European Society of Veterinary Virology (ESVV), Reading, UK, 182–193.
  4. Barcena J., Verdaguer N., Roca R., Morales M., Angulo I., Risco C., Carrascosa J.L., Torres J.M., Caston J.R. The coat protein of Rabbit hemorrhagic disease virus contains a molecular switch at the N-terminal region facing the inner surface of the capsid. Virology. 2004;322:118–134. doi: 10.1016/j.virol.2004.01.021. [DOI] [PubMed] [Google Scholar]
  5. Bertolotti-Ciarlet A., White L.J., Chen R., Prasad B.V., Estes M.K. Structural requirements for the assembly of Norwalk virus-like particles. J Virol. 2002;76:4044–4055. doi: 10.1128/JVI.76.8.4044-4055.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bhella D., Gatherer D., Chaudhry Y., Pink R., Goodfellow I.G. Structural insights into calicivirus attachment and uncoating. J Virol. 2008;82:8051–8058. doi: 10.1128/JVI.00550-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chen R., Neill J.D., Estes M.K., Prasad B.V. X-ray structure of a native calicivirus: structural insights into antigenic diversity and host specificity. Proc Natl Acad Sci U S A. 2006;103:8048–8053. doi: 10.1073/pnas.0600421103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chen R., Neill J.D., Noel J.S., Hutson A.M., Glass R.I., Estes M. K., Prasad B.V. Inter- and intragenus structural variations in caliciviruses and their functional implications. J Virol. 2004;78:6469–6479. doi: 10.1128/JVI.78.12.6469-6479.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Clarke I.N., Lambden P.R. The molecular biology of caliciviruses. J Gen Virol. 1997;78:291–301. doi: 10.1099/0022-1317-78-2-291. [DOI] [PubMed] [Google Scholar]
  10. Crowther R.A., Henderson R., Smith J.M. MRC image processing programs. J Struct Biol. 1996;116:9–16. doi: 10.1006/jsbi.1996.0003. [DOI] [PubMed] [Google Scholar]
  11. Eswar, N., Webb, B., Marti-Renom, M.A., Madhusudhan, M.S., Eramian, D., Shen, M.Y., Pieper, U., and Sali, A. (2006). Comparative protein structure modeling using Modeller. Current protocols in bioinformatics/editorial board, Andreas, D.B. et al. Chapter 5, Unit 56. [DOI] [PMC free article] [PubMed]
  12. Fernandez J.J., Luque D., Caston J.R., Carrascosa J.L. Sharpening high resolution information in single particle electron cryomicroscopy. J Struct Biol. 2008;164:170–175. doi: 10.1016/j.jsb.2008.05.010. [DOI] [PubMed] [Google Scholar]
  13. Frank J., Radermacher M., Penczek P., Zhu J., Li Y., Ladjadj M., Leith A. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J Struct Biol. 1996;116:190–199. doi: 10.1006/jsbi.1996.0030. [DOI] [PubMed] [Google Scholar]
  14. Granzow H., Weiland F., Strebelow H.G., Liu C.M., Schirrmeier H. Rabbit hemorrhagic disease virus (RHDV): ultrastructure and biochemical studies of typical and core-like particles present in liver homogenates. Virus Res. 1996;41:163–172. doi: 10.1016/0168-1702(96)01285-3. [DOI] [PubMed] [Google Scholar]
  15. Hillman B., Morris T.J., Kellen W.R., Hoffman D., Schlegel D. E. An invertebrate calici-like virus. Evidence for partial virion disintegration in host excreta. J Gen Virol. 1982;60:115–123. [Google Scholar]
  16. Katpally U., Wobus C.E., Dryden K., Virgin H.W., 4th, Smith T. J. Structure of antibody-neutralized murine norovirus and unexpected differences from viruslike particles. J Virol. 2008;82:2079–2088. doi: 10.1128/JVI.02200-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lander G.C., Stagg S.M., Voss N.R., Cheng A., Fellmann D., Pulokas J., Yoshioka C., Irving C., Mulder A., Lau P.W., et al. Appion: an integrated, database-driven pipeline to facilitate EM image processing. J Struct Biol. 2009;166:95–102. doi: 10.1016/j.jsb.2009.01.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., Valentin F., Wallace I.M., Wilm A., Lopez R., et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23:2947–2948. doi: 10.1093/bioinformatics/btm404. [DOI] [PubMed] [Google Scholar]
  19. Laurent S., Vautherot J.F., Madelaine M.F., Le Gall G., Rasschaert D. Recombinant rabbit hemorrhagic disease virus capsid protein expressed in baculovirus self-assembles into viruslike particles and induces protection. J Virol. 1994;68:6794–6798. doi: 10.1128/jvi.68.10.6794-6798.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Liu S.J., Xue H.P., Pu B.Q., Qian N.H. A new viral disease in rabbits. Anim Husb Vet Med. 1984;16:253–255. [Google Scholar]
  21. Ludtke S.J., Baldwin P.R., Chiu W. EMAN: semiautomated software for high-resolution single-particle reconstructions. J Struct Biol. 1999;128:82–97. doi: 10.1006/jsbi.1999.4174. [DOI] [PubMed] [Google Scholar]
  22. Martin Alonso J.M., Casais R., Boga J.A., Parra F. Processing of rabbit hemorrhagic disease virus polyprotein. J Virol. 1996;70:1261–1265. doi: 10.1128/jvi.70.2.1261-1265.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Meyers G., Wirblich C., Thiel H.J. Genomic and subgenomic RNAs of rabbit hemorrhagic disease virus are both protein-linked and packaged into particles. Virology. 1991;184:677–686. doi: 10.1016/0042-6822(91)90437-G. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Meyers G., Wirblich C., Thiel H.J. Rabbit hemorrhagic disease virus-molecular cloning and nucleotide sequencing of a calicivirus genome. Virology. 1991;184:664–676. doi: 10.1016/0042-6822(91)90436-F. [DOI] [PubMed] [Google Scholar]
  25. Mindell J.A., Grigorieff N. Accurate determination of local defocus and specimen tilt in electron microscopy. J Struct Biol. 2003;142:334–347. doi: 10.1016/S1047-8477(03)00069-8. [DOI] [PubMed] [Google Scholar]
  26. Nowotny N., Bascunana C.R., Ballagi-Pordany A., Gavier-Widen D., Uhlen M., Belak S. Phylogenetic analysis of rabbit haemorrhagic disease and European brown hare syndrome viruses by comparison of sequences from the capsid protein gene. Arch Virol. 1997;142:657–673. doi: 10.1007/s007050050109. [DOI] [PubMed] [Google Scholar]
  27. Ohlinger V.F., Thiel H.J. Identification of the viral haemorrhagic disease virus of rabbits as a calicivirus. Rev Sci Tech. 1991;10:311–323. doi: 10.20506/rst.10.2.548. [DOI] [PubMed] [Google Scholar]
  28. Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera-a visualization system for exploratory research and analysis. J Comput Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. [DOI] [PubMed] [Google Scholar]
  29. Prasad B.V., Hardy M.E., Dokland T., Bella J., Rossmann M.G., Estes M.K. X-ray crystallographic structure of the Norwalk virus capsid. Science. 1999;286:287–290. doi: 10.1126/science.286.5438.287. [DOI] [PubMed] [Google Scholar]
  30. Prasad B.V., Matson D.O., Smith A.W. Threedimensional structure of calicivirus. J Mol Biol. 1994;240:256–264. doi: 10.1006/jmbi.1994.1439. [DOI] [PubMed] [Google Scholar]
  31. Roseman A.M. FindEM-a fast, efficient program for automatic selection of particles from electron micrographs. J Struct Biol. 2004;145:91–99. doi: 10.1016/j.jsb.2003.11.007. [DOI] [PubMed] [Google Scholar]
  32. Rossmann M.G., Johnson J.E. Icosahedral RNA virus structure. Annu Rev Biochem. 1989;58:533–573. doi: 10.1146/annurev.bi.58.070189.002533. [DOI] [PubMed] [Google Scholar]
  33. Shaikh T.R., Gao H., Baxter W.T., Asturias F.J., Boisset N., Leith A., Frank J. SPIDER image processing for singleparticle reconstruction of biological macromolecules from electron micrographs. Nat Protoc. 2008;3:1941–1974. doi: 10.1038/nprot.2008.156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Smith J.M. Ximdisp-A visualization tool to aid structure determination from electron microscope images. J Struct Biol. 1999;125:223–228. doi: 10.1006/jsbi.1998.4073. [DOI] [PubMed] [Google Scholar]
  35. Thouvenin E., Laurent S., Madelaine M.F., Rasschaert D., Vautherot J.F., Hewat E.A. Bivalent binding of a neutralising antibody to a calicivirus involves the torsional flexibility of the antibody hinge. J Mol Biol. 1997;270:238–246. doi: 10.1006/jmbi.1997.1095. [DOI] [PubMed] [Google Scholar]
  36. Valicek L., Smid B., Rodak L., Kudrna J. Electron and immunoelectron microscopy of rabbit haemorrhagic disease virus (RHDV) Arch Virol. 1990;112:271–275. doi: 10.1007/BF01323171. [DOI] [PubMed] [Google Scholar]
  37. Venkataram Prasad B.V., Hardy M.E., Estes M.K. Structural studies of recombinant Norwalk capsids. J Infect Dis. 2000;181(Suppl2):S317–321. doi: 10.1086/315576. [DOI] [PubMed] [Google Scholar]
  38. Wirblich C., Thiel H.J., Meyers G. Genetic map of the calicivirus rabbit hemorrhagic disease virus as deduced from in vitro translation studies. J Virol. 1996;70:7974–7983. doi: 10.1128/jvi.70.11.7974-7983.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Xu Z.J., Chen W.X. Viral haemorrhagic disease in rabbits: a review. Vet Res Commun. 1989;13:205–212. doi: 10.1007/BF00142046. [DOI] [PubMed] [Google Scholar]
  40. Zheng D., Xue T., Xu W. Three-dimensional structure of the wild-type RHDV. Chinese Science Bulletin. 2001;46:1005–1009. doi: 10.1007/BF03183546. [DOI] [Google Scholar]

Articles from Protein & Cell are provided here courtesy of Oxford University Press

RESOURCES