Skip to main content
Protein & Cell logoLink to Protein & Cell
. 2010 Nov 9;1(10):888–897. doi: 10.1007/s13238-010-0113-z

Human catalase: looking for complete identity

Madhur M Goyal 1,, Anjan Basak 1
PMCID: PMC4875117  PMID: 21204015

Abstract

Catalases are well studied enzymes that play critical roles in protecting cells against the toxic effects of hydrogen peroxide. The ubiquity of the enzyme and the availability of substrates made heme catalases the focus of many biochemical and molecular biology studies over 100 years. In human, this has been implicated in various physiological and pathological conditions. Advancement in proteomics revealed many of novel and previously unknown features of this mysterious enzyme, but some functional aspects are yet to be explained. Along with discussion on future research area, this mini-review compile the information available on the structure, function and mechanism of action of human catalase.

Keywords: human catalase, structure and function, mechanism of action, futuristic research area

References

  1. Aebi H.E., Wyss S.R. In: In the metabolic basis of inherited disease. Stanbury J.B., Wyngaarden J.B., Fredrickson D.S., editors. New York: McGraw-Hill; 1978. pp. 1792–1807. [Google Scholar]
  2. Agar N.S., Sadrzadeh S.M.H., Hallaway P.E., Eaton J.W. Erythrocyte catalase. A somatic oxidant defense? J Clin Invest. 1986;77:319–321. doi: 10.1172/JCI112294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Almarsson O., Sinha A., Gopinath E., Bruice T.C. Mechanism of one-electron oxidation of NADPH and function of NADPH bound to catalase. J Am Chem Soc. 1993;115:7093–7102. [Google Scholar]
  4. Amara P., Andreoletti P., Jouve H.M., Field M.J. Ligand diffusion in the catalase from Proteus mirabilis: a molecular dynamics study. Protein Sci. 2001;10:1927–1935. doi: 10.1110/ps.14201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Andersson L.A., Dawson L.A. EXAFS spectroscopy of hemecontaining oxygenases and peroxidases. Structure and Bonding. 1991;64:1–40. [Google Scholar]
  6. Aragon C.M., Amit Z. The effect of 3-amino-1,2,4-triazole on voluntary ethanol consumption: evidence for brain catalase involvement in the mechanism of action. Neuropharmacology. 1992;31:709–712. doi: 10.1016/0028-3908(92)90150-n. [DOI] [PubMed] [Google Scholar]
  7. Archibald F.S., Duong M.N. Superoxide dismutase and oxygen toxicity defenses in the genus Neisseria. Infect Immun. 1986;51:631–641. doi: 10.1128/iai.51.2.631-641.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bicout D.J., Field M.J., Gouet P., Jouve H.M. Simulations of electron transfer in the NADPH-bound catalase from Proteus mirabilis PR. Biochim Biophys Acta. 1995;1252:172–176. doi: 10.1016/0167-4838(95)00123-c. [DOI] [PubMed] [Google Scholar]
  9. Bishai W.R., Smith H.O., Barcak G.J. A peroxide/ascorbate-inducible catalase from Haemophilus influenzae is homologous to the Escherichia coli katE gene product. J Bacteriol. 1994;176:2914–2921. doi: 10.1128/jb.176.10.2914-2921.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bishai W.R., Howard N.S., Winkelstein J.A., Smith H.O. Characterization and virulence analysis of catalase mutants of Haemophilus influenzae. Infect Immun. 1994;62:4855–4860. doi: 10.1128/iai.62.11.4855-4860.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Bonaventura J., Schroeder W.A., Fang S. Human erythrocyte catalase: an improved method of isolation and a reevaluation of reported properties. Arch Biochem Biophys. 1972;150:606–617. doi: 10.1016/0003-9861(72)90080-x. [DOI] [PubMed] [Google Scholar]
  12. Bravo J., Verdaguer N., Tormo J., Betzel C., Switala J., Loewen P. C., Fita I. Crystal structure of catalase HPII from Escherichia coli. Structure. 1995;3:491–502. doi: 10.1016/s0969-2126(01)00182-4. [DOI] [PubMed] [Google Scholar]
  13. Brown-Peterson N.J., Salin M.L. Purification of a catalase-peroxidase from Halobacterium halobium: characterization of some unique properties of the halophilic enzyme. J Bacteriol. 1993;175:4197–4202. doi: 10.1128/jb.175.13.4197-4202.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Brown-Peterson N.J., Salin M.L. Purification and characterization of a mesohalic catalase from the halophilic bacterium Halobacterium halobium. J Bacteriol. 1995;177:378–384. doi: 10.1128/jb.177.2.378-384.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Busciglio J., Yankner B.A. Apoptosis and increased generation of reactive oxygen species in Down’s syndrome neurons in vitro. Nature. 1995;378:776–779. doi: 10.1038/378776a0. [DOI] [PubMed] [Google Scholar]
  16. Canepa L., Ferraris A.M., Miglino M., Gaetani G.F. Bound and unbound pyridine dinucleotides in normal and glucose-6-phosphate dehydrogenase-deficient erythrocytes. Biochim Biophys Acta. 1991;1074:101–104. doi: 10.1016/0304-4165(91)90046-j. [DOI] [PubMed] [Google Scholar]
  17. Carpena X., Soriano M., Klotz M.G., Duckworth H.W., Donald L.J., Melik-Adamyan W., Fita I., Loewen P.C. Structure of the Clade 1 catalase, CatF of Pseudomonas syringae, at 1.8 A resolution. Proteins. 2003;50:423–436. doi: 10.1002/prot.10284. [DOI] [PubMed] [Google Scholar]
  18. Chelikani P., Carpena X., Fita I., Loewen P.C. An electrical potential in the access channel of catalases enhances catalysis. J Biol Chem. 2003;278:31290–31296. doi: 10.1074/jbc.M304076200. [DOI] [PubMed] [Google Scholar]
  19. Claiborne A., Malinowski D.P., Fridovich I. Purification and characterization of hydroperoxidase II of Escherichia coli B. J Biol Chem. 1979;254:11664–11668. [PubMed] [Google Scholar]
  20. Deisseroth A., Dounce A.L. Catalase: Physical and chemical properties, mechanism of catalysis, and physiological role. Physiol Rev. 1970;50:319–375. doi: 10.1152/physrev.1970.50.3.319. [DOI] [PubMed] [Google Scholar]
  21. Díaz A., Horjales E., Rudiño-Piñera E., Arreola R., Hansberg W. Unusual Cys-Tyr covalent bond in a large catalase. J Mol Biol. 2004;342:971–985. doi: 10.1016/j.jmb.2004.07.027. [DOI] [PubMed] [Google Scholar]
  22. Fita I., Rossmann M.G. The active center of catalase. J Mol Biol. 1985;185:21–37. doi: 10.1016/0022-2836(85)90180-9. [DOI] [PubMed] [Google Scholar]
  23. Fita I., Rossmann M.G. The NADPH binding site on beef liver catalase. Proc Natl Acad Sci U S A. 1985;82:1604–1608. doi: 10.1073/pnas.82.6.1604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Fita I., Silva A.M., Murthy M.R.N., Rossmann M.G. The refined structure of beef liver catalase at 2.5 Å resolution. Acta Crystallogr. 1986;42:497–515. [Google Scholar]
  25. Fraaije M.W., Roubroeks H.P., Hagen W.R., Van Berkel W.J.H. Purification and characterization of an intracellular catalase-peroxidase from Penicillium simplicissimum. Eur J Biochem. 1996;235:192–198. doi: 10.1111/j.1432-1033.1996.00192.x. [DOI] [PubMed] [Google Scholar]
  26. Friel J.K., Martin S.M., Langdon M., Herzberg G.R., Buettner G.R. Milk from mothers of both premature and full-term infants provides better antioxidant protection than does infant formula. Pediatr Res. 2002;51:612–618. doi: 10.1203/00006450-200205000-00012. [DOI] [PubMed] [Google Scholar]
  27. Gaetani F., Kirkman H.N. Am J Hum Genet. 1983;35:43. [Google Scholar]
  28. Gaetani G.F., Galiano S., Canepa L., Ferraris A.M., Kirkman H.N. Catalase and glutathione peroxidase are equally active in detoxification of hydrogen peroxide in human erythrocytes. Blood. 1989;73:334–339. [PubMed] [Google Scholar]
  29. Gaetani G.F., Ferraris A.M., Rolfo M., Mangerini R., Arena S., Kirkman H.N. Predominant role of catalase in the disposal of hydrogen peroxide within human erythrocytes. Blood. 1996;87:1595–1599. [PubMed] [Google Scholar]
  30. Gaetani G.F., Ferraris A.M., Sanna P., Kirkman H.N. A novel NADPH:(bound) NADP+ reductase and NADH:(bound) NADP+ transhydrogenase function in bovine liver catalase. Biochem J. 2005;385:763–768. doi: 10.1042/BJ20041495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Ganschow R.E., Schimke R.T. Independent genetic control of the catalytic activity and the rate of degradation of catalase in mice. J Biol Chem. 1969;244:4649–4658. [PubMed] [Google Scholar]
  32. Gibbons N.C.J., Wood J.M., Rokos H., Schallreuter K.U. Computer simulation of native epidermal enzyme structures in the presence and absence of hydrogen peroxide (H2O2): potential and pitfalls. J Invest Dermatol. 2006;126:2576–2582. doi: 10.1038/sj.jid.5700612. [DOI] [PubMed] [Google Scholar]
  33. Góth L. Lipid and carbohydrate metabolism in acatalasemia. Clin Chem. 2000;46:564–566. [PubMed] [Google Scholar]
  34. Góth L., Eaton J.W. Hereditary catalase deficiencies and increased risk of diabetes. Lancet. 2000;356:1820–1821. doi: 10.1016/S0140-6736(00)03238-4. [DOI] [PubMed] [Google Scholar]
  35. Góth L., Rass P., Páy A. Catalase enzyme mutations and their association with diseases. Mol Diagn. 2004;8:141–149. doi: 10.1007/BF03260057. [DOI] [PubMed] [Google Scholar]
  36. Góth L., Vitai M. Hypocatalasemia in hospital patients. Clin Chem. 1996;42:341–342. [PubMed] [Google Scholar]
  37. Gouet P., Jouve H.M., Dideberg O. Crystal structure of Proteus mirabilis PR catalase with and without bound NADPH. J Mol Biol. 1995;249:933–954. doi: 10.1006/jmbi.1995.0350. [DOI] [PubMed] [Google Scholar]
  38. Gouet P., Jouve H.M., Williams P.A., Andersson I., Andreoletti P., Nussaume L., Hajdu J. Ferryl intermediates of catalase captured by time-resolved Weissenberg crystallography and UV-VIS spectroscopy. Nat Struct Biol. 1996;3:951–956. doi: 10.1038/nsb1196-951. [DOI] [PubMed] [Google Scholar]
  39. Halliwell B., Gutteridge J.M.C. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J. 1984;219:1–14. doi: 10.1042/bj2190001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Heck D.E., Vetrano A.M., Mariano T.M., Laskin J.D. UVB light stimulates production of reactive oxygen species: unexpected role for catalase. J Biol Chem. 2003;278:22432–22436. doi: 10.1074/jbc.C300048200. [DOI] [PubMed] [Google Scholar]
  41. Ho Y.S., Xiong Y., Ma W., Spector A., Ho D.S. Mice lacking catalase develop normally but show differential sensitivity to oxidant tissue injury. J Biol Chem. 2004;279:32804–32812. doi: 10.1074/jbc.M404800200. [DOI] [PubMed] [Google Scholar]
  42. Hochman A., Shemesh A. Purification and characterization of a catalase-peroxidase from the photosynthetic bacterium Rhodopseudomonas capsulata. J Biol Chem. 1987;262:6871–6876. [PubMed] [Google Scholar]
  43. Hoffschir F., Daya-Grosjean L., Petit P.X., Nocentini S., Dutrillaux B., Sarasin A., Vuillaume M. Low catalase activity in xeroderma pigmentosum fibroblasts and SV40-transformed human cell lines is directly related to decreased intracellular levels of the cofactor, NADPH. Free Radic Biol Med. 1998;24:809–816. doi: 10.1016/s0891-5849(97)00350-x. [DOI] [PubMed] [Google Scholar]
  44. Hunt W.A. Role of acetaldehyde in the actions of ethanol on the brain-a review. Alcohol. 1996;13:147–151. doi: 10.1016/0741-8329(95)02026-8. [DOI] [PubMed] [Google Scholar]
  45. Islam K.N., Kayanoki Y., Kaneto H., Suzuki K., Asahi M., Fujii J., Taniguchi N. TGF-beta1 triggers oxidative modifications and enhances apoptosis in HIT cells through accumulation of reactive oxygen species by suppression of catalase and glutathione peroxidase. Free Radic Biol Med. 1997;22:1007–1017. doi: 10.1016/s0891-5849(96)00493-5. [DOI] [PubMed] [Google Scholar]
  46. Ivancich A., Jouve H.M., Gaillard J. EPR evidence for a tyrosyl radical intermediate in bovine liver catalase. J Am Chem Soc. 1996;118:12852–12853. [Google Scholar]
  47. Williams R.N., Delamere N.A., Paterson C.A. Inactivation of catalase with 3-amino-1,2,4-triazole: an indirect irreversible mechanism. Biochem Pharmacol. 1985;34:3386–3389. doi: 10.1016/0006-2952(85)90364-8. [DOI] [PubMed] [Google Scholar]
  48. Johnson R.M., Ho Y.S., Yu D.Y., Kuypers F.A., Ravindranath Y., Goyette G.W. The effects of disruption of genes for peroxiredoxin-2, glutathione peroxidase-1, and catalase on erythrocyte oxidative metabolism. Free Radic Biol Med. 2010;48:519–525. doi: 10.1016/j.freeradbiomed.2009.11.021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Jouve H.M., Pelmont J., Gaillard J. Interaction between pyridine adenine dinucleotides and bovine liver catalase: a chromatographic and spectral study. Arch Biochem Biophys. 1986;248:71–79. doi: 10.1016/0003-9861(86)90402-9. [DOI] [PubMed] [Google Scholar]
  50. Kang Y.J., Chen Y., Epstein P.N. Suppression of doxorubicin cardiotoxicity by overexpression of catalase in the heart of transgenic mice. J Biol Chem. 1996;271:12610–12616. doi: 10.1074/jbc.271.21.12610. [DOI] [PubMed] [Google Scholar]
  51. kani P.C., Fita I., Loewen P.C. Diversity of structures and properties among catalases. Cell Mol Life Sci. 2004;61:192–208. doi: 10.1007/s00018-003-3206-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Kim H., Lee J.S., Hah Y.C., Roe J.H. Characterization of the major catalase from Streptomyces coelicolor ATCC 10147. Microbiology. 1994;140:3391–3397. doi: 10.1099/13500872-140-12-3391. [DOI] [PubMed] [Google Scholar]
  53. Kirkman H.N. Fed. Proc. Fed. Am. Soc. Exp. Biol. 1982;41:1398. [Google Scholar]
  54. Kirkman H.N., Gaetani G.F. Catalase: a tetrameric enzyme with four tightly bound molecules of NADPH. Proc Natl Acad Sci U S A. 1984;81:4343–4347. doi: 10.1073/pnas.81.14.4343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Kirkman H.N., Gaetani G.F. Mammalian catalase: a venerable enzyme with new mysteries. Trends Biochem Sci. 2007;32:44–50. doi: 10.1016/j.tibs.2006.11.003. [DOI] [PubMed] [Google Scholar]
  56. Kirkman H.N., Gaetani G.F., Clemons E.H. NADPbinding proteins causing reduced availability and sigmoid release of NADP+ in human erythrocytes. J Biol Chem. 1986;261:4039–4045. [PubMed] [Google Scholar]
  57. Kirkman H.N., Galiano S., Gaetani G.F. The function of catalase-bound NADPH. J Biol Chem. 1987;262:660–666. [PubMed] [Google Scholar]
  58. Kirkman H.N., Rolfo M., Ferraris A.M., Gaetani G.F. Mechanisms of protection of catalase by NADPH. Kinetics and stoichiometry. J Biol Chem. 1999;274:13908–13914. doi: 10.1074/jbc.274.20.13908. [DOI] [PubMed] [Google Scholar]
  59. Kirkman H.N., Wilson W.G., Clemons E.H. Regulation of glucose-6-phosphate dehydrogenase I. Intact red cells. J Lab Clin Med. 1980;95:877–887. [PubMed] [Google Scholar]
  60. Kitlar T., Döring F., Diedrich D.F., Frank R., Wallmeier H., Kinne R. K., Deutscher J. Interaction of phlorizin, a potent inhibitor of the Na+/D-glucose cotransporter, with the NADPH-binding site of mammalian catalases. Protein Sci. 1994;3:696–700. doi: 10.1002/pro.5560030417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Ko T.P., Safo M.K., Musayev F.N., Di Salvo M.L., Wang C., Wu S. H., Abraham D.J. Structure of human erythrocyte catalase. Acta Crystallogr D Biol Crystallogr. 2000;56:241–245. doi: 10.1107/s0907444999015930. [DOI] [PubMed] [Google Scholar]
  62. Lapointe S., Sullivan R., Sirard M.A. Binding of a bovine oviductal fluid catalase to mammalian spermatozoa. Biol Reprod. 1998;58:747–753. doi: 10.1095/biolreprod58.3.747. [DOI] [PubMed] [Google Scholar]
  63. Malkin A.J., Kuznetsov Y., Land T.A., DeYoreo J.J., McPherson A. Mechanisms of growth for protein and virus crystals. Nat Struct Biol. 1995;2:956–959. doi: 10.1038/nsb1195-956. [DOI] [PubMed] [Google Scholar]
  64. Mann H., McCoy M.T., Subramaniam J., Van Remmen H., Cadet J.L. Overexpression of superoxide dismutase and catalase in immortalized neural cells: toxic effects of hydrogen peroxide. Brain Res. 1997;770:163–168. doi: 10.1016/s0006-8993(97)00768-3. [DOI] [PubMed] [Google Scholar]
  65. Margoliash E., Novogrodsky A., Schejter A. Irreversible reaction of 3-amino-1:2:4-triazole and related inhibitors with the protein of catalase. Biochem J. 1960;74:339–348. doi: 10.1042/bj0740339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Marcinkeviciene J.A., Magliozzo R.S., Blanchard J.S. Purification and characterization of the Mycobacterium smegmatis catalase-peroxidase involved in isoniazid activation. J Biol Chem. 1995;270:22290–22295. doi: 10.1074/jbc.270.38.22290. [DOI] [PubMed] [Google Scholar]
  67. Hamby-Mason R., Chen J.J., Schenker S., Perez A., Henderson G.I. Catalase mediates acetaldehyde formation from ethanol in fetal and neonatal rat brain. Alcohol Clin Exp Res. 1997;21:1063–1072. [PubMed] [Google Scholar]
  68. Maté M.J., Zamocky M., Nykyri L.M., Herzog C., Alzari P.M., Betzel C., Koller F., Fita I. Structure of catalase-A from Saccharomyces cerevisiae. J Mol Biol. 1999;286:135–149. doi: 10.1006/jmbi.1998.2453. [DOI] [PubMed] [Google Scholar]
  69. Matthews B.W. Solvent content of protein crystals. J Mol Biol. 1968;33:491–497. doi: 10.1016/0022-2836(68)90205-2. [DOI] [PubMed] [Google Scholar]
  70. Miyamoto T., Hayashi M., Takeuchi A., Okamoto T., Kawashima S., Takii T., Hayashi H., Onozaki K. Identification of a novel growth-promoting factor with a wide target cell spectrum from various tumor cells as catalase. J Biochem. 1996;120:725–730. doi: 10.1093/oxfordjournals.jbchem.a021471. [DOI] [PubMed] [Google Scholar]
  71. Mueller S., Riedel H.D., Stremmel W. Direct evidence for catalase as the predominant H2O2 -removing enzyme in human erythrocytes. Blood. 1997;90:4973–4978. [PubMed] [Google Scholar]
  72. Muppala V.K., Lin C.S., Lee Y.H. The role of HNF-1alpha in controlling hepatic catalase activity. Mol Pharmacol. 2000;57:93–100. [PubMed] [Google Scholar]
  73. Murshudov G.N., Melik-Adamyan W.R., Grebenko A.I., Barynin V. V., Vagin A.A., Vainshtein B.K., Dauter Z., Wilson K.S. Three-dimensional structure of catalase from Micrococcus lysodeikticus at 1.5 A resolution. FEBS Lett. 1992;312:127–131. doi: 10.1016/0014-5793(92)80919-8. [DOI] [PubMed] [Google Scholar]
  74. Nadler V., Goldberg I., Hochman A. Comparative study of bacterial catalase. Biochim Biophys Acta. 1986;882:234–241. [Google Scholar]
  75. Nicholls P., Fita I., Loewen P.C. Enzymology and structure of catalases. Adv Inorg Chem. 2001;51:51–106. [Google Scholar]
  76. O’Malley Y.Q., Reszka K.J., Rasmussen G.T., Abdalla M.Y., Denning G.M., Britigan B.E. The Pseudomonas secretory product pyocyanin inhibits catalase activity in human lung epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2003;285:L1077–L1086. doi: 10.1152/ajplung.00198.2003. [DOI] [PubMed] [Google Scholar]
  77. Ogata M. Acatalasemia. Hum Genet. 1991;86:331–340. doi: 10.1007/BF00201829. [DOI] [PubMed] [Google Scholar]
  78. Oktyabrsky O.N., Smirnova G.V. Redox regulations of cellular functions. Biochemistry (Moscow) 2007;72(2):132–145. doi: 10.1134/s0006297907020022. [DOI] [PubMed] [Google Scholar]
  79. Olson L.P., Bruice T.C. Electron tunneling and ab initio calculations related to the one-electron oxidation of NAD(P)H bound to catalase. Biochemistry. 1995;34:7335–7347. doi: 10.1021/bi00022a006. [DOI] [PubMed] [Google Scholar]
  80. Peter C.L., Martin G.K., Daniel J.H. Catalase-an “old” enzyme that continues to surprise us. ASM News. 2000;66:76–82. [Google Scholar]
  81. Prakash K., Prajapati S., Ahmad A., Jain S.K., Bhakuni V. Unique oligomeric intermediates of bovine liver catalase. Protein Sci. 2002;11:46–57. doi: 10.1110/ps.20102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Purdue P.E., Lazarow P.B. Targeting of human catalase to peroxisomes is dependent upon a novel COOH-terminal peroxisomal targeting sequence. J Cell Biol. 1996;134:849–862. doi: 10.1083/jcb.134.4.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Putnam C.D., Arvai A.S., Bourne Y., Tainer J.A. Active and inhibited human catalase structures: ligand and NADPH binding and catalytic mechanism. J Mol Biol. 2000;296:295–309. doi: 10.1006/jmbi.1999.3458. [DOI] [PubMed] [Google Scholar]
  84. Quilliet X., Chevallier-Lagente O., Zeng L., Calvayrac R., Mezzina M., Sarasin A., Vuillaume M. Retroviral-mediated correction of DNA repair defect in xeroderma pigmentosum cells is associated with recovery of catalase activity. Mutat Res. 1997;385:235–242. doi: 10.1016/s0921-8777(97)00049-9. [DOI] [PubMed] [Google Scholar]
  85. Iozzo R.V., MacDonald G.H., Wight T.N. Immunoelectron microscopic localization of catalase in human eosinophilic leukocytes. J Histochem Cytochem. 1982;30:697–701. doi: 10.1177/30.7.6809811. [DOI] [PubMed] [Google Scholar]
  86. Rocha E.R., Selby T., Coleman J.P., Smith C.J. Oxidative stress response in an anaerobe, Bacteroides fragilis: a role for catalase in protection against hydrogen peroxide. J Bacteriol. 1996;178:6895–6903. doi: 10.1128/jb.178.23.6895-6903.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Rovira C. Structure, protonation state and dynamics of catalase compound II. Chemphyschem. 2005;6:1820–1826. doi: 10.1002/cphc.200400633. [DOI] [PubMed] [Google Scholar]
  88. Safo M.K., Musayev F.N., Wu S.H., Abraham D.J., Ko T.P. Structure of tetragonal crystals of human erythrocyte catalase. Acta Crystallogr D Biol Crystallogr. 2001;57:1–7. doi: 10.1107/s0907444900013767. [DOI] [PubMed] [Google Scholar]
  89. Sancho P., Troyano A., Fernández C., De Blas E., Aller P. Differential effects of catalase on apoptosis induction in human promonocytic cells. Relationships with heat-shock protein expression. Mol Pharmacol. 2003;63:581–589. doi: 10.1124/mol.63.3.581. [DOI] [PubMed] [Google Scholar]
  90. Sandstrom P.A., Buttke T.M. Autocrine production of extracellular catalase prevents apoptosis of the human CEM T-cell line in serum-free medium. Proc Natl Acad Sci U S A. 1993;90:4708–4712. doi: 10.1073/pnas.90.10.4708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Sato A., Furuno T., Toyoshima C., Sasabe H. Twodimensional crystallization of catalase on a monolayer film of poly(1-benzyl-L-histidine) spread at the air/water interface. Biochim Biophys Acta. 1993;1162:54–60. doi: 10.1016/0167-4838(93)90127-d. [DOI] [PubMed] [Google Scholar]
  92. Schonbaum G.R., Chance B. In: In the enzymes. Boyer P. D., editor. New York: Academic; 1976. pp. 368–408. [Google Scholar]
  93. Sevinc M.S., Maté M.J., Switala J., Fita I., Loewen P.C. Role of the lateral channel in catalase HPII of Escherichia coli. Protein Sci. 1999;8:490–498. doi: 10.1110/ps.8.3.490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Sharma K.D., Andersson L.A., Loehr T.M., Terner J., Goff H.M. Comparative spectral analysis of mammalian, fungal, and bacterial catalases. Resonance Raman evidence for iron-tyrosinate coordination. J Biol Chem. 1989;264:12772–12779. [PubMed] [Google Scholar]
  95. Shingu M., Yoshioka K., Nobunaga M., Yoshida K. Human vascular smooth muscle cells and endothelial cells lack catalase activity and are susceptible to hydrogen peroxide. Inflammation. 1985;9:309–320. doi: 10.1007/BF00916279. [DOI] [PubMed] [Google Scholar]
  96. Sigfrid L.A., Cunningham J.M., Beeharry N., Lortz S., Tiedge M., Lenzen S., Carlsson C., Green I.C. Cytokines and nitric oxide inhibit the enzyme activity of catalase but not its protein or mRNA expression in insulin-producing cells. J Mol Endocrinol. 2003;31:509–518. doi: 10.1677/jme.0.0310509. [DOI] [PubMed] [Google Scholar]
  97. Takeuchi A., Miyamoto T., Yamaji K., Masuho Y., Hayashi M., Hayashi H., Onozaki K. A human erythrocyte-derived growth-promoting factor with a wide target cell spectrum: identification as catalase. Cancer Res. 1995;55:1586–1589. [PubMed] [Google Scholar]
  98. Terzenbach D.P., Blaut M. Purification and characterization of a catalase from the nonsulfur phototrophic bacterium Rhodobacter sphaeroides ATH 2.4.1 and its role in the oxidative stress response. Arch Microbiol. 1998;169:503–508. doi: 10.1007/s002030050603. [DOI] [PubMed] [Google Scholar]
  99. Tiedge M., Lortz S., Drinkgern J., Lenzen S. Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. Diabetes. 1997;46:1733–1742. doi: 10.2337/diab.46.11.1733. [DOI] [PubMed] [Google Scholar]
  100. Tiedge M., Lortz S., Munday R., Lenzen S. Complementary action of antioxidant enzymes in the protection of bioengineered insulin-producing RINm5F cells against the toxicity of reactive oxygen species. Diabetes. 1998;47:1578–1585. doi: 10.2337/diabetes.47.10.1578. [DOI] [PubMed] [Google Scholar]
  101. Vainshtein B.K., Melik-Adamyan W.R., Barynin V.V., Vagin A.A., Grebenko A.I., Borisov V.V., Bartels K.S., Fita I., Rossmann M.G. Three-dimensional structure of catalase from Penicillium vitale at 2.0 A resolution. J Mol Biol. 1986;188:49–61. doi: 10.1016/0022-2836(86)90479-1. [DOI] [PubMed] [Google Scholar]
  102. Vetrano A.M., Heck D.E., Mariano T.M., Mishin V., Laskin D.L., Laskin J.D. Characterization of the oxidase activity in mammalian catalase. J Biol Chem. 2005;280:35372–35381. doi: 10.1074/jbc.M503991200. [DOI] [PubMed] [Google Scholar]
  103. Vuillaume M. Reduced oxygen species, mutation, induction and cancer initiation. Mutat Res. 1987;186:43–72. doi: 10.1016/0165-1110(87)90014-5. [DOI] [PubMed] [Google Scholar]
  104. Wood J.M., Gibbons N.C.J., Chavan B., Schallreuter K.U. Computer simulation of heterogeneous single nucleotide polymorphisms in the catalase gene indicates structural changes in the enzyme active site, NADPH-binding and tetramerization domains: a genetic predisposition for an altered catalase in patients with vitiligo? Exp Dermatol. 2008;17:366–371. doi: 10.1111/j.1600-0625.2008.00699.x. [DOI] [PubMed] [Google Scholar]
  105. Yabuki M., Kariya S., Ishisaka R., Yasuda T., Yoshioka T., Horton A.A., Utsumi K. Resistance to nitric oxide-mediated apoptosis in HL-60 variant cells is associated with increased activities of Cu,Zn-superoxide dismutase and catalase. Free Radic Biol Med. 1999;26:325–332. doi: 10.1016/s0891-5849(98)00203-2. [DOI] [PubMed] [Google Scholar]
  106. Young I.S., Woodside J.V. Antioxidants in health and disease. J Clin Pathol. 2001;54:176–186. doi: 10.1136/jcp.54.3.176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Yumoto I., Fukumori Y., Yamanaka T. Purification and characterization of catalase from a facultative alkalophilic Bacillus. J Biochem. 1990;108:583–587. doi: 10.1093/oxfordjournals.jbchem.a123246. [DOI] [PubMed] [Google Scholar]
  108. Zimatkin S.M., Liopo A.V., Deitrich R.A. Distribution and kinetics of ethanol metabolism in rat brain. Alcohol Clin Exp Res. 1998;22:1623–1627. [PubMed] [Google Scholar]
  109. Zamocky M., Furtmüller P.G., Obinger C. Evolution of catalases from bacteria to humans. Antioxid Redox Signal. 2008;10:1527–1548. doi: 10.1089/ars.2008.2046. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein & Cell are provided here courtesy of Oxford University Press

RESOURCES