Skip to main content
Protein & Cell logoLink to Protein & Cell
. 2010 Jun 4;1(5):478–490. doi: 10.1007/s13238-010-0058-2

Drosophila RecQ5 is required for efficient SSA repair and suppression of LOH in vivo

Yixu Chen 1,2, Wen Dui 1,2,3, Zhongsheng Yu 1,2, Changqing Li 1, Jun Ma 1,3, Renjie Jiao 1,
PMCID: PMC4875135  PMID: 21203963

Abstract

RecQ5 in mammalian cells has been suggested to suppress inappropriate homologous recombination. However, the specific pathway(s) in which it is involved and the underlining mechanism(s) remain poorly understood. We took advantage of genetic tools in Drosophila to investigate how Drosophila RecQ5 (dRecQ5) functions in vivo in homologous recombination-mediated double strand break (DSB) repair. We generated null alleles of dRecQ5 using the targeted recombination technique. The mutant animals are homozygous viable, but with growth retardation during development. The mutants are sensitive to both exogenous DSB-inducing treatment, such as gamma-irradiation, and endogenously induced double strand breaks (DSBs) by I-Sce I endonuclease. In the absence of dRecQ5, single strand annealing (SSA)-mediated DSB repair is compromised with compensatory increases in either inter-homologous gene conversion, or non-homologous end joining (NHEJ) when inter-chromosomal homologous sequence is unavailable. Loss of function of dRecQ5 also leads to genome instability in loss of heterozygosity (LOH) assays. Together, our data demonstrate that dRecQ5 functions in SSA-mediated DSB repair to achieve its full efficiency and in suppression of LOH in Drosophila.

Keywords: Drosophila RecQ5, double strand break repair, homologous recombination, nonhomologous end joining, single strand annealing, RecQ helicase

Footnotes

These authors contributed equally to this work

References

  1. Adams M.D., McVey M., Sekelsky J.J. Drosophila BLM in double-strand break repair by synthesis-dependent strand annealing. Science. 2003;299:265–267. doi: 10.1126/science.1077198. [DOI] [PubMed] [Google Scholar]
  2. Bachrati C.Z., Hickson I.D. RecQ helicases: guardian angels of the DNA replication fork. Chromosoma. 2008;117:219–233. doi: 10.1007/s00412-007-0142-4. [DOI] [PubMed] [Google Scholar]
  3. Boubriak I., Mason P.A., Clancy D.J., Dockray J., Saunders R.D., Cox L.S. DmWRNexo is a 3′–5′ exonuclease: phenotypic and biochemical characterization of mutants of the Drosophila orthologue of human WRN exonuclease. Biogerontology. 2009;10:267–277. doi: 10.1007/s10522-008-9181-3. [DOI] [PubMed] [Google Scholar]
  4. Brodsky M.H., Sekelsky J.J., Tsang G., Hawley R.S., Rubin G. M. mus304 encodes a novel DNA damage checkpoint protein required during Drosophila development. Genes Dev. 2000;14:666–678. [PMC free article] [PubMed] [Google Scholar]
  5. Chu W.K., Hickson I.D. RecQ helicases: multifunctional genome caretakers. Nat Rev Cancer. 2009;9:644–654. doi: 10.1038/nrc2682. [DOI] [PubMed] [Google Scholar]
  6. Egli D., Selvaraj A., Yepiskoposyan H., Zhang B., Hafen E., Georgiev O., Schaffner W. Knockout of ‘metalresponsive transcription factor’ MTF-1 in Drosophila by homologous recombination reveals its central role in heavy metal homeostasis. EMBO J. 2003;22:100–108. doi: 10.1093/emboj/cdg012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Egli D., Yepiskoposyan H., Selvaraj A., Balamurugan K., Rajaram R., Simons A., Multhaup G., Mettler S., Vardanyan A., Georgiev O., et al. A family knockout of all four Drosophila metallothioneins reveals a central role in copper homeostasis and detoxification. Mol Cell Biol. 2006;26:2286–2296. doi: 10.1128/MCB.26.6.2286-2296.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ghabrial A., Ray R.P., Schupbach T. okra and spindle-B encode components of the RAD52 DNA repair pathway and affect meiosis and patterning in Drosophila oogenesis. Genes Dev. 1998;12:2711–2723. doi: 10.1101/gad.12.17.2711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hu Y., Lu X., Barnes E., Yan M., Lou H., Luo G. Recql5 and Blm RecQ DNA helicases have nonredundant roles in suppressing crossovers. Mol Cell Biol. 2005;25:3431–3442. doi: 10.1128/MCB.25.9.3431-3442.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hu Y., Raynard S., Sehorn M.G., Lu X., Bussen W., Zheng L., Stark J.M., Barnes E.L., Chi P., Janscak P., et al. RECQL5/Recql5 helicase regulates homologous recombination and suppresses tumor formation via disruption of Rad51 presynaptic filaments. Genes Dev. 2007;21:3073–3084. doi: 10.1101/gad.1609107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jeong S.M., Kawasaki K., Juni N., Shibata T. Identification of Drosophila melanogaster RECQE as a member of a new family of RecQ homologues that is preferentially expressed in early embryos. Mol Gen Genet. 2000;263:183–193. doi: 10.1007/s004380051159. [DOI] [PubMed] [Google Scholar]
  12. Jeong Y.S., Kang Y., Lim K.H., Lee M.H., Lee J., Koo H.S. Deficiency of Caenorhabditis elegans RecQ5 homologue reduces life span and increases sensitivity to ionizing radiation. DNA Repair (Amst) 2003;2:1309–1319. doi: 10.1016/j.dnarep.2003.07.003. [DOI] [PubMed] [Google Scholar]
  13. Johnson-Schlitz D., Engels W.R. Template disruptions and failure of double Holliday junction dissolution during double-strand break repair in Drosophila BLM mutants. Proc Natl Acad Sci U S A. 2006;103:16840–16845. doi: 10.1073/pnas.0607904103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Johnson-Schlitz D.M., Flores C., Engels W.R. Multiplepathway analysis of double-strand break repair mutations in Drosophila. PLoS Genet. 2007;3:e50. doi: 10.1371/journal.pgen.0030050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kappeler M., Kranz E., Woolcock K., Georgiev O., Schaffner W. Drosophila bloom helicase maintains genome integrity by inhibiting recombination between divergent DNA sequences. Nucleic Acids Res. 2008;36:6907–6917. doi: 10.1093/nar/gkn793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kawasaki K., Maruyama S., Nakayama M., Matsumoto K., Shibata T. Drosophila melanogaster RECQ5/QE DNA helicase: stimulation by GTP binding. Nucleic Acids Res. 2002;30:3682–3691. doi: 10.1093/nar/gkf487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kusano K., Berres M.E., Engels W.R. Evolution of the RECQ family of helicases: A drosophila homolog, Dmblm, is similar to the human bloom syndrome gene. Genetics. 1999;151:1027–1039. doi: 10.1093/genetics/151.3.1027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kusano K., Johnson-Schlitz D.M., Engels W.R. Sterility of Drosophila with mutations in the Bloom syndrome gene—complementation by Ku70. Science. 2001;291:2600–2602. doi: 10.1126/science.291.5513.2600. [DOI] [PubMed] [Google Scholar]
  19. McVey M., Andersen S.L., Broze Y., Sekelsky J. Multiple functions of Drosophila BLM helicase in maintenance of genome stability. Genetics. 2007;176:1979–1992. doi: 10.1534/genetics.106.070052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nakayama M., Yamaguchi S., Sagisu Y., Sakurai H., Ito F., Kawasaki K. Loss of RecQ5 leads to spontaneous mitotic defects and chromosomal aberrations in Drosophila melanogaster. DNA Repair (Amst) 2009;8:232–241. doi: 10.1016/j.dnarep.2008.10.007. [DOI] [PubMed] [Google Scholar]
  21. Ozsoy A.Z., Sekelsky J.J., Matson S.W. Biochemical characterization of the small isoform of Drosophila melanogaster RECQ5 helicase. Nucleic Acids Res. 2001;29:2986–2993. doi: 10.1093/nar/29.14.2986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Plessis A., Perrin A., Haber J.E., Dujon B. Site-specific recombination determined by I-SceI, a mitochondrial group I intronencoded endonuclease expressed in the yeast nucleus. Genetics. 1992;130:451–460. doi: 10.1093/genetics/130.3.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Preston C.R., Flores C.C., Engels W.R. Differential usage of alternative pathways of double-strand break repair in Drosophila. Genetics. 2006;172:1055–1068. doi: 10.1534/genetics.105.050138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rong Y.S., Golic K.G. The homologous chromosome is an effective template for the repair of mitotic DNA double-strand breaks in Drosophila. Genetics. 2003;165:1831–1842. doi: 10.1093/genetics/165.4.1831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rong Y.S., Titen S.W., Xie H.B., Golic M.M., Bastiani M., Bandyopadhyay P., Olivera B.M., Brodsky M., Rubin G.M., Golic K.G. Targeted mutagenesis by homologous recombination in D. melanogaster. Genes Dev. 2002;16:1568–1581. doi: 10.1101/gad.986602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rouet P., Smih F., Jasin M. Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc Natl Acad Sci U S A. 1994;91:6064–6068. doi: 10.1073/pnas.91.13.6064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Saunders R.D., Boubriak I., Clancy D.J., Cox L.S. Identification and characterization of a Drosophila ortholog of WRN exonuclease that is required to maintain genome integrity. Aging Cell. 2008;7:418–425. doi: 10.1111/j.1474-9726.2008.00388.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sekelsky J.J., Brodsky M.H., Rubin G.M., Hawley R.S. Drosophila and human RecQ5 exist in different isoforms generated by alternative splicing. Nucleic Acids Res. 1999;27:3762–3769. doi: 10.1093/nar/27.18.3762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Takeuchi H., Georgiev O., Fetchko M., Kappeler M., Schaffner W., Egli D. In vivo construction of transgenes in Drosophila. Genetics. 2007;175:2019–2028. doi: 10.1534/genetics.106.065920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Trowbridge K., McKim K., Brill S.J., Sekelsky J. Synthetic lethality of Drosophila in the absence of the MUS81 endonuclease and the DmBlm helicase is associated with elevated apoptosis. Genetics. 2007;176:1993–2001. doi: 10.1534/genetics.106.070060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wei D.S., Rong Y.S. A genetic screen for DNA doublestrand break repair mutations in Drosophila. Genetics. 2007;177:63–77. doi: 10.1534/genetics.107.077693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wu J., Capp C., Feng L., Hsieh T.S. Drosophila homologue of the Rothmund-Thomson syndrome gene: essential function in DNA replication during development. Dev Biol. 2008;323:130–142. doi: 10.1016/j.ydbio.2008.08.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Xu Y., Lei Z., Huang H., Dui W., Liang X., Ma J., Jiao R. dRecQ4 is required for DNA synthesis and essential for cell proliferation in Drosophila. PLoS One. 2009;4:e6107. doi: 10.1371/journal.pone.0006107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Zheng L., Kanagaraj R., Mihaljevic B., Schwendener S., Sartori A. A., Gerrits B., Shevelev I., Janscak P. MRE11 complex links RECQ5 helicase to sites of DNA damage. Nucleic Acids Res. 2009;37:2645–2657. doi: 10.1093/nar/gkp147. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein & Cell are provided here courtesy of Oxford University Press

RESOURCES