Abstract
Complement proteins in blood recognize charged particles. The anionic phospholipid (aPL) cardiolipin binds both complement proteins C1q and factor H. C1q is an activator of the complement classical pathway, while factor H is an inhibitor of the alternative pathway. To examine opposing effects of C1q and factor H on complement activation by aPL, we surveyed C1q and factor H binding, and complement activation by aPL, either coated on microtitre plates or in liposomes. Both C1q and factor H bound to all aPL tested, and competed directly with each other for binding. All the aPL activated the complement classical pathway, but negligibly the alternative pathway, consistent with accepted roles of C1q and factor H. However, in this system, factor H, by competing directly with C1q for binding to aPL, acts as a direct regulator of the complement classical pathway. This regulatory mechanism is distinct from its action on the alternative pathway. Regulation of classical pathway activation by factor H was confirmed by measuring C4 activation by aPL in human sera in which the C1q:factor H molar ratio was adjusted over a wide range. Thus factor H, which is regarded as a down-regulator only of the alternative pathway, has a distinct role in downregulating activation of the classical complement pathway by aPL. A factor H homologue, β2-glycoprotein-1, also strongly inhibits C1q binding to cardiolipin. Recombinant globular domains of C1q A, B and C chains bound aPL similarly to native C1q, confirming that C1q binds aPL via its globular heads.
Keywords: complement, regulation, classical pathway, C1q, factor H, anionic phospholipid
References
- Agnello V., Carr R.I., Koffler D., Kunkel H. Gel diffusion reactions of C1 with aggregated globulin, DNA and various anionic substances. Fed Proc. 1969;28:696. [Google Scholar]
- Bradley A.J., Brooks D.E., Norris-Jones R., Devine D.V. C1q binding to liposomes is surface charge dependent and is inhibited by peptides consisting of residues 14–26 of the human C1qA chain in a sequence independent manner. Biochim Biophys Acta. 1999;1418:19–30. doi: 10.1016/S0005-2736(99)00013-9. [DOI] [PubMed] [Google Scholar]
- Carreno M.P., Labarre D., Maillet F., Jozefowicz M., Kazatchkine M.D. Regulation of the human alternative complement pathway: formation of a ternary complex between factor H, surface-bound C3b and chemical groups on nonactivating surfaces. Eur J Immunol. 1989;19:2145–2150. doi: 10.1002/eji.1830191126. [DOI] [PubMed] [Google Scholar]
- Charlesworth J.A., Scott D.M., Pussell B.A., Peters D.K. Metabolism of human beta 1H: studies in man and experimental animals. Clin Exp Immunol. 1979;38:397–404. [PMC free article] [PubMed] [Google Scholar]
- Chonn A., Cullis P.R., Devine D.V. The role of surface charge in the activation of the classical and alternative pathways of complement by liposomes. J Immunol. 1991;146:4234–4241. [PubMed] [Google Scholar]
- Clas F., Euteneuer B., Stemmer F., Loos M. Interaction of fluid phase C1/C1q and macrophage membrane-associated C1q with gram-negative bacteria. Behring Inst Mitt. 1989;84:236–254. [PubMed] [Google Scholar]
- Cooper N.R., Jensen F.C., Welsh R.M., Jr, Oldstone M.B. Lysis of RNA tumor viruses by human serum: direct antibody-independent triggering of the classical complement pathway. J Exp Med. 1976;144:970–984. doi: 10.1084/jem.144.4.970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dillon S.P., D’souza A., Kurien B.T., Scofield R.H. Systemic lupus erythematosus and C1q: A quantitative ELISA for determining C1q levels in serum. Biotechnol J. 2009;4:1210–1214. doi: 10.1002/biot.200800273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dodds A.W., Porter R.R. The activation of complement components by aggregates of antibodies and their fragments. Mol Immunol. 1979;16:1059–1062. doi: 10.1016/0161-5890(79)90039-7. [DOI] [PubMed] [Google Scholar]
- Dodds A.W., Sim R.B., Porter R.R., Kerr M.A. Activation of the first component of human complement (C1) by antibody-antigen aggregates. Biochem J. 1978;175:383–390. doi: 10.1042/bj1750383. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Easterbrook-Smith S.B., Wilson M.R., Wines B.D. RHP is antigenically related to factor H and binds to the globular heads of C1q. Mol Immunol. 1992;29:1203–1207. doi: 10.1016/0161-5890(92)90056-4. [DOI] [PubMed] [Google Scholar]
- Edey M., Strain L., Ward R., Ahmed S., Thomas T., Goodship T.H. Is complement factor H a susceptibility factor for IgA nephropathy? Mol Immunol. 2009;46:1405–1408. doi: 10.1016/j.molimm.2008.12.002. [DOI] [PubMed] [Google Scholar]
- Fairbanks G., Steck T.L., Wallach D.F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971;10:2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
- Ferluga J., Yu B.B., Guerin J., Jackson J., Sim R.B. Similarities between complement Factor H and beta-2 glycoprotein 1: phospholipid binding and auto-antibodies. Mol Immunol. 1998;35:375. doi: 10.1016/S0161-5890(98)90711-8. [DOI] [Google Scholar]
- Fraker P.J., Speck J.C., Jr. Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphrenylglycoluril. Biochem Biophys Res Commun. 1978;80:849–857. doi: 10.1016/0006-291X(78)91322-0. [DOI] [PubMed] [Google Scholar]
- Gadd K.J., Reid K.B.M. Importance of the integrity of the inter-heavy-chain disulphide bond of rabbit IgG in the activation of the alternative pathway of human complement by the F(ab’)2 region of rabbit IgG antibody in immune aggregates. Immunology. 1981;42:75–82. [PMC free article] [PubMed] [Google Scholar]
- Harris E.N., Gharavi A.E., Patel S.P., Hughes G.R. Evaluation of the anti-cardiolipin antibody test: report of an international workshop held 4 April 1986. Clin Exp Immunol. 1987;68:215–222. [PMC free article] [PubMed] [Google Scholar]
- Holme E.R., Qi M., Ahmed A.E., Veitch J., Auda G., Whaley K. Purification and characterization of RHP (factor H) and study of its interactions with the first component of complement. Mol Immunol. 1992;29:957–964. doi: 10.1016/0161-5890(92)90134-J. [DOI] [PubMed] [Google Scholar]
- Hurwitz C., Rosano C.L., Hechemy K.E., Weber P., Parhami N. Structural, immunological and functional comparisons of factor H, rheumatoid arthritis protein (RHP), and its apparent normal counterpart (N-RHP) Mol Immunol. 1995;32:1259–1269. doi: 10.1016/0161-5890(95)00068-2. [DOI] [PubMed] [Google Scholar]
- Ingram G., Hakobyan S., Hirst C.L., Harris C.L., Pickersgill T.P., Cossburn M.D., Loveless S., Robertson N.P., Morgan B.P. Complement regulator factor H as a serum biomarker of multiple sclerosis disease state. Brain. 2010;133:1602–1611. doi: 10.1093/brain/awq085. [DOI] [PubMed] [Google Scholar]
- Jiang H., Burdick D., Glabe C.G., Cotman C.W., Tenner A.J. beta-Amyloid activates complement by binding to a specific region of the collagen-like domain of the C1q A chain. J Immunol. 1994;152:5050–5059. [PubMed] [Google Scholar]
- Jiang H., Cooper B., Robey F.A., Gewurz H. DNA binds and activates complement via residues 14–26 of the human C1q A chain. J Biol Chem. 1992;267:25597–25601. [PubMed] [Google Scholar]
- Johnstone A., Thorpe R. Purification of immunoglobulins, constituent chains and fragments. Immunochemistry in Practice. Oxford, UK: Blackwell Scientific Publications; 1987. pp. 48–85. [Google Scholar]
- Kang Y.H., Tan L.A., Carroll M.V., Gentle M.E., Sim R.B. Target pattern recognition by complement proteins of the classical and alternative pathways. Adv Exp Med Biol. 2009;653:117–128. doi: 10.1007/978-1-4419-0901-5_8. [DOI] [PubMed] [Google Scholar]
- Kertesz Z., Yu B.B., Steinkasserer A., Haupt H., Benham A., Sim R.B. Characterization of binding of human 2-glycoprotein I to cardiolipin. Biochem J. 1995;310:315–321. doi: 10.1042/bj3100315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kishore U., Reid K.B.M. C1q: structure, function, and receptors. Immunopharmacology. 2000;49:159–170. doi: 10.1016/S0162-3109(00)80301-X. [DOI] [PubMed] [Google Scholar]
- Kishore U., Strong P., Perdikoulis M.V., Reid K.B.M. A recombinant homotrimer, composed of the alpha helical neck region of human surfactant protein D and C1q B chain globular domain, is an inhibitor of the classical complement pathway. J Immunol. 2001;166:559–565. doi: 10.4049/jimmunol.166.1.559. [DOI] [PubMed] [Google Scholar]
- Kojouharova M.S., Panchev I.D., Tchorbadjieva M.I., Reid K.B.M., Hoppe H.J. Differential binding of IgG and of a HIV gp41 peptide by the B chain and A chain globular head sequences of C1q, respectively. J Immunol. 1998;161:4325–4331. [PubMed] [Google Scholar]
- Korb L.C., Ahearn J.M. C1q binds directly and specifically to surface blebs of apoptotic human keratinocytes: complement deficiency and systemic lupus erythematosus revisited. J Immunol. 1997;158:4525–4528. [PubMed] [Google Scholar]
- Kovacsovics T., Tschopp J., Kress A., Isliker H. Antibody-independent activation of C1 by cardiolipin. J Immunol. 1985;135:2695–2700. [PubMed] [Google Scholar]
- Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Marjan J., Xie Z., Devine D.V. Liposome-induced activation of the classical complement pathway does not require immunoglobulin. Biochim Biophys Acta. 1994;1192:35–44. doi: 10.1016/0005-2736(94)90140-6. [DOI] [PubMed] [Google Scholar]
- Martin S.J., Reutelingsperger C.P., McGahon A.J., Rader J.A., van Schie R.C., LaFace D.M., Green D.R. Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J Exp Med. 1995;182:1545–1556. doi: 10.1084/jem.182.5.1545. [DOI] [PMC free article] [PubMed] [Google Scholar]
- New R.C.C. Preparation of liposomes. In: New R. C. C., editor. Liposomes — a practical approach. Oxford, UK: IRL Press; 1990. pp. 33–104. [Google Scholar]
- Ogden C.A., deCathelineau A., Hoffmann P.R., Bratton D., Ghebrehiwet B., Fadok V.A., Henson P.M. C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. J Exp Med. 2001;194:781–795. doi: 10.1084/jem.194.6.781. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okada M., Udaka K., Utsumi S. Co-operative interaction of subcomponents of the first component of complement with IgG: a functional defect of dimeric Facb from rabbit IgG. Mol Immunol. 1985;22:1399–1406. doi: 10.1016/0161-5890(85)90063-X. [DOI] [PubMed] [Google Scholar]
- Païdassi H., Tacnet-Delorme P., Garlatti V., Darnault C., Ghebrehiwet B., Gaboriaud C., Arlaud G.J., Frachet P. C1q binds phosphatidylserine and likely acts as a multiligand-bridging molecule in apoptotic cell recognition. J Immunol. 2008;180:2329–2338. doi: 10.4049/jimmunol.180.4.2329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peitsch M.C., Tschopp J., Kress A., Isliker H. Antibodyindependent activation of the complement system by mitochondria is mediated by cardiolipin. Biochem J. 1988;249:495–500. doi: 10.1042/bj2490495. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Presanis J.S., Hajela K., Ambrus G., Gál P., Sim R.B. Differential substrate and inhibitor profiles for human MASP-1 and MASP-2. Mol Immunol. 2004;40:921–929. doi: 10.1016/j.molimm.2003.10.013. [DOI] [PubMed] [Google Scholar]
- Reid K.B.M., Porter R.R. Subunit composition and structure of subcomponent C1q of the first component of human complement. Biochem J. 1976;155:19–23. doi: 10.1042/bj1550019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ripoche J., Day A.J., Harris T.J., Sim R.B. The complete amino acid sequence of human complement factor H. Biochem J. 1988;249:593–602. doi: 10.1042/bj2490593. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ripoche J., Erdei A., Gilbert D., Al Salihi A., Sim R.B., Fontaine M. Two populations of complement factor H differ in their ability to bind to cell surfaces. Biochem J. 1988;253:475–480. doi: 10.1042/bj2530475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roumenina L., Bureeva S., Kantardjiev A., Karlinsky D., Andia-Pravdivy J.E., Sim R., Kaplun A., Popov M., Kishore U., Atanasov B. Complement C1q-target proteins recognition is inhibited by electric moment effectors. J Mol Recognit. 2007;20:405–415. doi: 10.1002/jmr.853. [DOI] [PubMed] [Google Scholar]
- Rybak-Smith M.J., Pondman K.M., Flahaut E., Salvador-Morales C., Sim R.B. In: Recognition of carbon nanotubes by the human innate immune system. In Multi-functional carbon nanotubes for biomedical applications. Klingeler R., Sim R.B., editors. Berlin/Heidelberg: Springer Verlag; 2010. pp. 183–210. [Google Scholar]
- Schneider M.C., Exley R.M., Chan H., Feavers I., Kang Y.H., Sim R.B., Tang C.M. Functional significance of factor H binding to Neisseria meningitidis. J Immunol. 2006;176:7566–7575. doi: 10.4049/jimmunol.176.12.7566. [DOI] [PubMed] [Google Scholar]
- Sim E., Palmer M.S., Puklavec M., Sim R.B. Monoclonal antibodies against the complement control protein factor H (beta 1 H) Biosci Rep. 1983;3:1119–1131. doi: 10.1007/BF01120205. [DOI] [PubMed] [Google Scholar]
- Sim R.B., Day A.J., Moffatt B.E., Fontaine M. Complement factor I and cofactors in control of complement system convertase enzymes. Methods Enzymol. 1993;223:13–35. doi: 10.1016/0076-6879(93)23035-L. [DOI] [PubMed] [Google Scholar]
- Sim R.B., Kishore U., Villiers C.L., Marche P.N., Mitchell D.A. C1q binding and complement activation by prions and amyloids. Immunobiology. 2007;212:355–362. doi: 10.1016/j.imbio.2007.04.001. [DOI] [PubMed] [Google Scholar]
- Sim R.B., Malhotra R. Interactions of carbohydrates and lectins with complement. Biochem Soc Trans. 1994;22:106–111. doi: 10.1042/bst0220106. [DOI] [PubMed] [Google Scholar]
- Sim R.B., Moffatt B.E., Shaw J.M., Ferluga J. Complement control proteins and receptors: from FH to CR4. In: Reid K.B.M., Sim R.B., editors. Molecular Aspects of Innate and Adaptive Immunity. Cambridge: Royal Society of Chemistry; 2008. pp. 84–104. [Google Scholar]
- Sjöberg A.P., Trouw L.A., Blom A.M. Complement activation and inhibition: a delicate balance. Trends Immunol. 2009;30:83–90. doi: 10.1016/j.it.2008.11.003. [DOI] [PubMed] [Google Scholar]
- Sorice M., Circella A., Misasi R., Pittoni V., Garofalo T., Cirelli A., Pavan A., Pontieri G.M., Valesini G. Cardiolipin on the surface of apoptotic cells as a possible trigger for antiphospholipids antibodies. Clin Exp Immunol. 2000;122:277–284. doi: 10.1046/j.1365-2249.2000.01353.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stewart J.C.M. Colorimetric determination of phospholipids with ammonium ferrothiocyanate. Anal Biochem. 1980;104:10–14. doi: 10.1016/0003-2697(80)90269-9. [DOI] [PubMed] [Google Scholar]
- Szebeni J. The interaction of liposomes with the complement system. Crit Rev Ther Drug Carrier Syst. 1998;15:57–88. doi: 10.1615/CritRevTherDrugCarrierSyst.v15.i1.20. [DOI] [PubMed] [Google Scholar]
- Tacnet-Delorme P., Chevallier S., Arlaud G.J. Betaamyloid fibrils activate the C1 complex of complement under physiological conditions: evidence for a binding site for A beta on the C1q globular regions. J Immunol. 2001;167:6374–6381. doi: 10.4049/jimmunol.167.11.6374. [DOI] [PubMed] [Google Scholar]
- Tambourgi D.V., De Sousa Da Silva M., Billington S.J., Gonçalves De Andrade R.M., Magnoli F.C., Songer J.G., Van Den Berg C.W. Mechanism of induction of complement susceptibility of erythrocytes by spider and bacterial sphingomyelinases. Immunology. 2002;107:93–101. doi: 10.1046/j.1365-2567.2002.01483.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tambourgi D.V., Pedrosa M.F., de Andrade R.M., Billington S.J., Griffiths M., van den Berg C.W. Sphingomyelinases D induce direct association of C1q to the erythrocyte membrane causing complement mediated autologous haemolysis. Mol Immunol. 2007;44:576–582. doi: 10.1016/j.molimm.2006.02.002. [DOI] [PubMed] [Google Scholar]
- Tan L.A., Kishore U., Ferluga J., Yu B., Sim R.B. A role for factor H in regulating classical pathway activation. Int Immunopharmacol. 2002;2:1264. [Google Scholar]
- Tan L.A., Sim R.B. Complement activation by phospholipids (PL) Mol Immunol. 2001;38:125. [Google Scholar]
- Wallis R., Mitchell D.A., Schmid R., Schwaeble W.J., Keeble A.H. Paths reunited: Initiation of the classical and lectin pathways of complement activation. Immunobiology. 2010;215:1–11. doi: 10.1016/j.imbio.2009.08.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whaley K., North J. In: Haemolytic assays for whole complement activity and individual components. In Complement — a practical approach. Dodds A. W., Sim R. B., editors. Oxford, UK: Higher Education Press and Springer-Verlag; 1997. pp. 19–48. [Google Scholar]
- Williams S.C., Sim R.B. Dye-ligand affinity purification of human complement factor B and beta 2 glycoprotein I. J Immunol Methods. 1993;157:25–30. doi: 10.1016/0022-1759(93)90066-G. [DOI] [PubMed] [Google Scholar]
- Yu B.B., Moffatt B.E., Willis A.C., Sim R.B. A generalised method for purifying complement factor H and β2-glycoprotein 1, based on their binding to cardiolipin. Exp Clin Immunogenet. 1997;14:39. [Google Scholar]
- Yu B.B., Moffatt B.E., Willis A.C., Sim R.B. Binding of human and animal serum proteins to cardiolipin — a generalised method for purifying beta-2 glycoprotein 1 and complement factor H. Immunology. 1995;86:161. [Google Scholar]