Skip to main content
Protein & Cell logoLink to Protein & Cell
. 2010 Dec 10;1(11):974–978. doi: 10.1007/s13238-010-0133-8

Synthetic circuits, devices and modules

Hong Zhang 1, Taijiao Jiang 1,
PMCID: PMC4875155  PMID: 21153514

Abstract

The aim of synthetic biology is to design artificial biological systems for novel applications. From an engineering perspective, construction of biological systems of defined functionality in a hierarchical way is fundamental to this emerging field. Here, we highlight some current advances on design of several basic building blocks in synthetic biology including the artificial gene control elements, synthetic circuits and their assemblies into devices and modules. Such engineered basic building blocks largely expand the synthetic toolbox and contribute to our understanding of the underlying design principles of living cells.

Keywords: synthetic biology, genetic circuit, synthetic device, module

References

  1. Andrianantoandro, E., Basu, S., Karig, D.K., and Weiss, R. (2006). Synthetic biology: new engineering rules for an emerging discipline. Mol Syst Biol 2, 2006.0028. [DOI] [PMC free article] [PubMed]
  2. Atsumi S., Higashide W., Liao J.C. Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnol. 2009;27:1177–1180. doi: 10.1038/nbt.1586. [DOI] [PubMed] [Google Scholar]
  3. Beisel C.L., Bayer T.S., Hoff K.G., Smolke C.D. Modelguided design of ligand-regulated RNAi for programmable control of gene expression. Mol Syst Biol. 2008;4:224–237. doi: 10.1038/msb.2008.62. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Buchler N.E., Cross F.R. Protein sequestration generates a flexible ultrasensitive response in a genetic network. Mol Syst Biol. 2009;5:272–278. doi: 10.1038/msb.2009.30. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cello J., Paul A.V., Wimmer E. Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template. Science. 2002;297:1016–1018. doi: 10.1126/science.1072266. [DOI] [PubMed] [Google Scholar]
  6. Chan, L.Y., Kosuri, S., and Endy, D. (2005). Refactoring bacteriophage T7. Mol Syst Biol 1, 2005 0018. [DOI] [PMC free article] [PubMed]
  7. Danino T., Mondragón-Palomino O., Tsimring L., Hasty J. A synchronized quorum of genetic clocks. Nature. 2010;463:326–330. doi: 10.1038/nature08753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Desai S.K., Gallivan J.P. Genetic screens and selections for small molecules based on a synthetic riboswitch that activates protein translation. J Am Chem Soc. 2004;126:13247–13254. doi: 10.1021/ja048634j. [DOI] [PubMed] [Google Scholar]
  9. Dhanasekaran M., Negi S., Sugiura Y. Designer zinc finger proteins: tools for creating artificial DNA-binding functional proteins. Acc Chem Res. 2006;39:45–52. doi: 10.1021/ar050158u. [DOI] [PubMed] [Google Scholar]
  10. Dickins R.A., Hemann M.T., Zilfou J.T., Simpson D.R., Ibarra I., Hannon G.J., Lowe S.W. Probing tumor phenotypes using stable and regulated synthetic microRNA precursors. Nat Genet. 2005;37:1289–1295. doi: 10.1038/ng1651. [DOI] [PubMed] [Google Scholar]
  11. Dixon N., Duncan J.N., Geerlings T., Dunstan M.S., McCarthy J.E., Leys D., Micklefield J. Reengineering orthogonally selective riboswitches. Proc Natl Acad Sci USA. 2010;107:2830–2835. doi: 10.1073/pnas.0911209107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Elowitz M.B., Leibler S. A synthetic oscillatory network of transcriptional regulators. Nature. 2000;403:335–338. doi: 10.1038/35002125. [DOI] [PubMed] [Google Scholar]
  13. Friedland A.E., Lu T.K., Wang X., Shi D., Church G., Collins J. J. Synthetic gene networks that count. Science. 2009;324:1199–1202. doi: 10.1126/science.1172005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fung E., Wong W.W., Suen J.K., Bulter T., Lee S.G., Liao J.C. A synthetic gene-metabolic oscillator. Nature. 2005;435:118–122. doi: 10.1038/nature03508. [DOI] [PubMed] [Google Scholar]
  15. Gardner T.S., Cantor C.R., Collins J.J. Construction of a genetic toggle switch in Escherichia coli. Nature. 2000;403:339–342. doi: 10.1038/35002131. [DOI] [PubMed] [Google Scholar]
  16. Georgiou G. How to flip the (redox) switch. Cell. 2002;111:607–610. doi: 10.1016/S0092-8674(02)01165-0. [DOI] [PubMed] [Google Scholar]
  17. Gertz J., Cohen B.A. Environment-specific combinatorial cis-regulation in synthetic promoters. Mol Syst Biol. 2009;5:244–252. doi: 10.1038/msb.2009.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gertz J., Siggia E.D., Cohen B.A. Analysis of combinatorial cis-regulation in synthetic and genomic promoters. Nature. 2009;457:215–218. doi: 10.1038/nature07521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ghim C.M., Almaas E. Two-component genetic switch as a synthetic module with tunable stability. Phys Rev Lett. 2009;103:028101. doi: 10.1103/PhysRevLett.103.028101. [DOI] [PubMed] [Google Scholar]
  20. Gibson D.G., Benders G.A., Andrews-Pfannkoch C., Denisova E. A., Baden-Tillson H., Zaveri J., Stockwell T.B., Brownley A., Thomas D.W., Algire M.A., et al. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science. 2008;319:1215–1220. doi: 10.1126/science.1151721. [DOI] [PubMed] [Google Scholar]
  21. Gibson D.G., Glass J.I., Lartigue C., Noskov V.N., Chuang R.Y., Algire M.A., Benders G.A., Montague M.G., Ma L., Moodie M. M., et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science. 2010;329:52–56. doi: 10.1126/science.1190719. [DOI] [PubMed] [Google Scholar]
  22. Hooshangi S., Thiberge S., Weiss R. Ultrasensitivity and noise propagation in a synthetic transcriptional cascade. Proc Natl Acad Sci U S A. 2005;102:3581–3586. doi: 10.1073/pnas.0408507102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Huang J., Koide A., Makabe K., Koide S. Design of protein function leaps by directed domain interface evolution. Proc Natl Acad Sci U S A. 2008;105:6578–6583. doi: 10.1073/pnas.0801097105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kemmer C., Gitzinger M., Daoud-El Baba M., Djonov V., Stelling J., Fussenegger M. Self-sufficient control of urate homeostasis in mice by a synthetic circuit. Nat Biotechnol. 2010;28:355–360. doi: 10.1038/nbt.1617. [DOI] [PubMed] [Google Scholar]
  25. Kim D.H., Behlke M.A., Rose S.D., Chang M.S., Choi S., Rossi J.J. Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat Biotechnol. 2005;23:222–226. doi: 10.1038/nbt1051. [DOI] [PubMed] [Google Scholar]
  26. Kim J., White K.S., Winfree E. Construction of an in vitro bistable circuit from synthetic transcriptional switches. Mol Syst Biol. 2006;2:68–79. doi: 10.1038/msb4100099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kobayashi H., Kaern M., Araki M., Chung K., Gardner T.S., Cantor C.R., Collins J.J. Programmable cells: interfacing natural and engineered gene networks. Proc Natl Acad Sci U S A. 2004;101:8414–8419. doi: 10.1073/pnas.0402940101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Levskaya A., Weiner O.D., Lim W.A., Voigt C.A. Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature. 2009;461:997–1001. doi: 10.1038/nature08446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lou C., Liu X., Ni M., Huang Y., Huang Q., Huang L., Jiang L., Lu D., Wang M., Liu C., et al. Synthesizing a novel genetic sequential logic circuit: a push-on push-off switch. Mol Syst Biol. 2010;6:350–360. doi: 10.1038/msb.2010.2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Lundblad E.W., Xiao G., Ko J.H., Altman S. Rapid selection of accessible and cleavable sites in RNA by Escherichia coli RNase P and random external guide sequences. Proc Natl Acad Sci U S A. 2008;105:2354–2357. doi: 10.1073/pnas.0711977105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Martin V.J., Pitera D.J., Withers S.T., Newman J.D., Keasling J.D. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol. 2003;21:796–802. doi: 10.1038/nbt833. [DOI] [PubMed] [Google Scholar]
  32. Mogno I., Vallania F., Mitra R.D., Cohen B.A. TATA is a modular component of synthetic promoters. Genome Res. 2010;20:1391–1397. doi: 10.1101/gr.106732.110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Mulhbacher J., St-Pierre P., Lafontaine D.A. Therapeutic applications of ribozymes and riboswitches. Curr Opin Pharmacol. 2010;10:551–556. doi: 10.1016/j.coph.2010.07.002. [DOI] [PubMed] [Google Scholar]
  34. Murphy K.F., Adams R.M., Wang X., Balázsi G., Collins J.J. Tuning and controlling gene expression noise in synthetic gene networks. Nucleic Acids Res. 2010;38:2712–2726. doi: 10.1093/nar/gkq091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Negi S., Imanishi M., Matsumoto M., Sugiura Y. New redesigned zinc-finger proteins: design strategy and its application. Chemistry. 2008;14:3236–3249. doi: 10.1002/chem.200701320. [DOI] [PubMed] [Google Scholar]
  36. Nomura W., Sugiura Y. Design and synthesis of artificial zinc finger proteins. Methods Mol Biol. 2007;352:83–93. doi: 10.1385/1-59745-187-8:83. [DOI] [PubMed] [Google Scholar]
  37. Park S.H., Zarrinpar A., Lim W.A. Rewiring MAP kinase pathways using alternative scaffold assembly mechanisms. Science. 2003;299:1061–1064. doi: 10.1126/science.1076979. [DOI] [PubMed] [Google Scholar]
  38. Paulsen C.E., Carroll K.S. Chemical dissection of an essential redox switch in yeast. Chem Biol. 2009;16:217–225. doi: 10.1016/j.chembiol.2009.01.003. [DOI] [PubMed] [Google Scholar]
  39. Peisajovich S.G., Garbarino J.E., Wei P., Lim W.A. Rapid diversification of cell signaling phenotypes by modular domain recombination. Science. 2010;328:368–372. doi: 10.1126/science.1182376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Pomposiello P.J., Demple B. Redox-operated genetic switches: the SoxR and OxyR transcription factors. Trends Biotechnol. 2001;19:109–114. doi: 10.1016/S0167-7799(00)01542-0. [DOI] [PubMed] [Google Scholar]
  41. Pósfai G., Plunkett G., 3rd, Fehér T., Frisch D., Keil G.M., Umenhoffer K., Kolisnychenko V., Stahl B., Sharma S.S., de Arruda M., et al. Emergent properties of reduced-genome Escherichia coli. Science. 2006;312:1044–1046. doi: 10.1126/science.1126439. [DOI] [PubMed] [Google Scholar]
  42. Radhika V., Proikas-Cezanne T., Jayaraman M., Onesime D., Ha J.H., Dhanasekaran D.N. Chemical sensing of DNT by engineered olfactory yeast strain. Nat Chem Biol. 2007;3:325–330. doi: 10.1038/nchembio882. [DOI] [PubMed] [Google Scholar]
  43. Ro D.K., Paradise E.M., Ouellet M., Fisher K.J., Newman K.L., Ndungu J.M., Ho K.A., Eachus R.A., Ham T.S., Kirby J., et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature. 2006;440:940–943. doi: 10.1038/nature04640. [DOI] [PubMed] [Google Scholar]
  44. Saito H., Kobayashi T., Hara T., Fujita Y., Hayashi K., Furushima R., Inoue T. Synthetic translational regulation by an L7Ae-kink-turn RNP switch. Nat Chem Biol. 2010;6:71–78. doi: 10.1038/nchembio.273. [DOI] [PubMed] [Google Scholar]
  45. Sera T. Generation of cell-permeable artificial zinc finger protein variants. Methods Mol Biol. 2010;649:91–96. doi: 10.1007/978-1-60761-753-2_5. [DOI] [PubMed] [Google Scholar]
  46. Shen N., Ko J.H., Xiao G., Wesolowski D., Shan G., Geller B., Izadjoo M., Altman S. Inactivation of expression of several genes in a variety of bacterial species by EGS technology. Proc Natl Acad Sci U S A. 2009;106:8163–8168. doi: 10.1073/pnas.0903491106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Silverman J., Liu Q., Lu Q., Bakker A., To W., Duguay A., Alba B. M., Smith R., Rivas A., Li P., et al. Multivalent avimer proteins evolved by exon shuffling of a family of human receptor domains. Nat Biotechnol. 2005;23:1556–1561. doi: 10.1038/nbt1166. [DOI] [PubMed] [Google Scholar]
  48. Siolas D., Lerner C., Burchard J., Ge W., Linsley P.S., Paddison P. J., Hannon G.J., Cleary M.A. Synthetic shRNAs as potent RNAi triggers. Nat Biotechnol. 2005;23:227–231. doi: 10.1038/nbt1052. [DOI] [PubMed] [Google Scholar]
  49. Smith H.O., Hutchison C.A., 3rd, Pfannkoch C., Venter J.C. Generating a synthetic genome by whole genome assembly: phiX174 bacteriophage from synthetic oligonucleotides. Proc Natl Acad Sci U S A. 2003;100:15440–15445. doi: 10.1073/pnas.2237126100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Sprengel, R., and Hasan, M.T. (2007). Tetracycline-controlled genetic switches. Handb Exp Pharmacol, 49–72. [DOI] [PubMed]
  51. Steen E.J., Kang Y., Bokinsky G., Hu Z., Schirmer A., McClure A., Del Cardayre S.B., Keasling J.D. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature. 2010;463:559–562. doi: 10.1038/nature08721. [DOI] [PubMed] [Google Scholar]
  52. Stricker J., Cookson S., Bennett M.R., Mather W.H., Tsimring L.S., Hasty J. A fast, robust and tunable synthetic gene oscillator. Nature. 2008;456:516–519. doi: 10.1038/nature07389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Suess B., Fink B., Berens C., Stentz R., Hillen W. A theophylline responsive riboswitch based on helix slipping controls gene expression in vivo. Nucleic Acids Res. 2004;32:1610–1614. doi: 10.1093/nar/gkh321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Suryawanshi H., Scaria V., Maiti S. Modulation of microRNA function by synthetic ribozymes. Mol Biosyst. 2010;6:1807–1809. doi: 10.1039/c0mb00010h. [DOI] [PubMed] [Google Scholar]
  55. Tietze L.F., Düfert A., Lotz F., Sölter L., Oum K., Lenzer T., Beck T., Herbst-Irmer R. Synthesis of chiroptical molecular switches by pd-catalyzed domino reactions. J Am Chem Soc. 2009;131:17879–17884. doi: 10.1021/ja906260x. [DOI] [PubMed] [Google Scholar]
  56. Tigges M., Marquez-Lago T.T., Stelling J., Fussenegger M. A tunable synthetic mammalian oscillator. Nature. 2009;457:309–312. doi: 10.1038/nature07616. [DOI] [PubMed] [Google Scholar]
  57. Winkler W.C. Riboswitches and the role of noncoding RNAs in bacterial metabolic control. Curr Opin Chem Biol. 2005;9:594–602. doi: 10.1016/j.cbpa.2005.09.016. [DOI] [PubMed] [Google Scholar]
  58. Yen L., Svendsen J., Lee J.S., Gray J.T., Magnier M., Baba T., D’Amato R.J., Mulligan R.C. Exogenous control of mammalian gene expression through modulation of RNA self-cleavage. Nature. 2004;431:471–476. doi: 10.1038/nature02844. [DOI] [PubMed] [Google Scholar]
  59. Zhang K., Sawaya M.R., Eisenberg D.S., Liao J.C. Expanding metabolism for biosynthesis of nonnatural alcohols. Proc Natl Acad Sci U S A. 2008;105:20653–20658. doi: 10.1073/pnas.0807157106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Zhang X., Schaffitzel C., Ban N., Shan S.O. Multiple conformational switches in a GTPase complex control co-translational protein targeting. Proc Natl Acad Sci U S A. 2009;106:1754–1759. doi: 10.1073/pnas.0808573106. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein & Cell are provided here courtesy of Oxford University Press

RESOURCES